[1]
|
Y. Belaud and A. Shishkov, Long-time extinction of solutions of some semilinear parabolic equations, J. Differential Equations, 238(2007), 64-86.
Google Scholar
|
[2]
|
S. Benachour, Ph. Laurençot and D. Schmitt, Extinction and decay estimates for viscous Hamiton-Jacobi equation in RN, Proc. Amer. Math. Soc., 130(2002), 1103-1111.
Google Scholar
|
[3]
|
S. Benachour, Ph. Laurençot, D. Schmitt and Ph. Souplet, Extinction and nonextinction for viscous Hamiton-Jacobi equation in RN, Asym. Anal., 31(2002), 229-246.
Google Scholar
|
[4]
|
S. L. Chen, The extinction behavior of solutions for a class of reaction-diffusion equations, Appl. Math. Mech. English Ed., 22(2001), 1352-1356.
Google Scholar
|
[5]
|
Y. J. Chen, J. Wang and H. X. Zhang, Extinction for a couple of fast diffusion systems with nonlinear sources, Nonlinear Anal. Real World Appl., 14(2013), 1931-1937.
Google Scholar
|
[6]
|
E. DiBenedetto, Degenerate Parabolic Equations, Spribger-Verlag, New York, 1993.
Google Scholar
|
[7]
|
Z. B. Fang and X. H. Xu, Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources, Nonlinear Anal. Real World Appl., 13(2012), 1780-1789.
Google Scholar
|
[8]
|
Y. Furusho and Y. Murata, Principal eigenvalue of the p-Laplacian in RN, Nonlinear Anal., 30(1997), 4749-4756.
Google Scholar
|
[9]
|
Y. G. Gu, Necessary and sufficient conditions of extinction of solution on parabolic equations, Acta Math. Sinica, 37(1994), 73-79(in Chinese).
Google Scholar
|
[10]
|
Y. Z. Han and W. J. Gao, Extinction and non-extinction for a polytropic filtration equation with a nonlocal source, Appl. Anal., 92(2013), 636-650.
Google Scholar
|
[11]
|
Y. Z. Han and W. J. Gao, Extinction for a fast diffusion equation with a nonlinear nonlocal source, Arch. Math., 97(2011), 353-363.
Google Scholar
|
[12]
|
R. G. Iagar and Ph. Laurençot, Positivity, decay, and extinction for a singular diffusion equation with gradient absorption, J. Funct. Anal., 262(2012), 3186-3239.
Google Scholar
|
[13]
|
M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56(1986), 889-892.
Google Scholar
|
[14]
|
C. H. Jin, J. X. Yin and Y. Y. Ke, Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources, Proc. Edinb. Math. Soc., 52(2009), 419-444.
Google Scholar
|
[15]
|
A. V. Lair, Finite extinction time for solutions of nonlinear parabolic equations, Nonlinear Anal., 21(1993), 1-8.
Google Scholar
|
[16]
|
Y. X. Li and J. C. Wu, Extinction for fast diffusion equations with nonlinear sources, Electron. J. Differential Equations, 23(2005)(2005), 1-7.
Google Scholar
|
[17]
|
D. M. Liu and C. L. Mu, Extinction for a quasilinear parabolic equation with a nonlinear gradient source, Taiwanese J. Math., 18(2014), 1329-1343.
Google Scholar
|
[18]
|
D. M. Liu, C. L. Mu and Guifeng Zuo, Critical extinction exponent for a quasilinear parabolic equation with a gradient source, to appear in J. Appl. Math. Comput., DOI 10.1007/s12190-014-0805-2.
Google Scholar
|
[19]
|
W. J. Liu, Extinction and non-extinction of solutions for a nonlocal reactiondiffusion problem, Electron. J. Qual. Theory Differ. Equ., 15(2010), 1-12.
Google Scholar
|
[20]
|
W. J. Liu, Extinction properties of solutions for a class of fast diffusive pLaplacian equations, Nonlinear Anal., 74(2011), 4520-4532.
Google Scholar
|
[21]
|
W. J. Liu and B. Wu, A note on extinction for fast diffusive p-Laplacian with sources, Math. Methods Appl. Sci., 31(2008), 1383-1386.
Google Scholar
|
[22]
|
C. L. Mu, L. C. Wang and P. Zheng, Extinction and non-extinction for a polytropic filtration equation with absorption and source, J. Math. Anal. Appl., 391(2012), 429-440.
Google Scholar
|
[23]
|
C. L. Mu, L. Yan and Y. B. Xiao, Extinction and nonextinction for the fast diffusion equation, Abstr. Appl. Anal., 2013(2013), Article ID 747613, 5 pages.
Google Scholar
|
[24]
|
M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation, Comm. Partial Differential Equations, 22(1997), 381-411.
Google Scholar
|
[25]
|
H. F. Shang, Doubly nonlinear parabolic equations with measure data, Annali di Matematica, 192(2013), 273-296.
Google Scholar
|
[26]
|
Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250(2011), 3047-3087.
Google Scholar
|
[27]
|
Y. Tian and C. L. Mu, Extinction and non-extinction for a p-Laplacian equation with nonlinear source, Nonlinear Anal., 69(2008), 2422-2431.
Google Scholar
|
[28]
|
Y. F. Wang and J. X. Yin, Critical extinction exponents for a polytropic filtration equation with absorption and source, Math. Methods Appl. Sci., 36(2013), 1591-1597.
Google Scholar
|
[29]
|
X. H. Xu and Z. B. Fang, Extinction and decay estimates of solutions for a p-Laplacian evolution equation with nonlinear gradient source and absorption, Bound. Value Probl., 39(2014), 1-17.
Google Scholar
|
[30]
|
J. X. Yin and C. H. Jin, Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources, Math. Methods Appl. Sci., 30(2007), 1147-1167.
Google Scholar
|
[31]
|
H. J. Yuan, X. J. Xu, W. J. Gao, S. Z. Lian and C. L. Cao, Extinction and positivity for the evolution p-Laplacian equation with L1 initial data, J. Math. Anal. Appl., 310(2005), 328-337.
Google Scholar
|
[32]
|
P. Zheng and C. L. Mu, Extinction and decay estimates of solutions for a polytropic filtration equation with the nonlocal source and interior absorption, Math. Methods Appl. Sci., 36(2013), 730-743.
Google Scholar
|
[33]
|
J. Zhou and C. L. Mu, Critical blow-up and extinction exponents for nonNewton polytropic filtration equation with source, Bull. Korean Math. Soc., 46(2009), 1159-1173.
Google Scholar
|