Jibin Li. NOTES ON EXACT TRAVELLING WAVE SOLUTIONS FOR A LONG WAVE-SHORT WAVE MODEL[J]. Journal of Applied Analysis & Computation, 2015, 5(1): 138-140. doi: 10.11948/2015011
Citation: |
Jibin Li. NOTES ON EXACT TRAVELLING WAVE SOLUTIONS FOR A LONG WAVE-SHORT WAVE MODEL[J]. Journal of Applied Analysis & Computation, 2015, 5(1): 138-140. doi: 10.11948/2015011
|
NOTES ON EXACT TRAVELLING WAVE SOLUTIONS FOR A LONG WAVE-SHORT WAVE MODEL
-
Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
-
Abstract
This paper considers a long wave-short wave model. It shows that under three different parameter conditions, this system has three types of exact explicit travelling wave solutions. Their parametric representations have been given.
-
-
References
[1]
|
A. Chowdhury, and J. A. Tataronis, Long wave-short wave resonace in negative refractive index media, Phys. Rev. Lett. 100(2008), 153905.
Google Scholar
|
[2]
|
L. Li and Q. P. Liu, A long waves-short waves model:Darboux transformation and soliton solutions, J. Math. Physics, 52(2011), 053513.
Google Scholar
|
[3]
|
A. C. Newell, Long waves-short waves:a solvable model, SIAM J. Math. 35(1978),650-664.
Google Scholar
|
[4]
|
A. C. Newell, The general structure of integrable evolution equations, Proc. R. Soc. London, Ser. A 365(1979), 283-311.
Google Scholar
|
[5]
|
L. H. Zhang, Evans functions and bifurcations of standing wave solutions in delayed synaptically coupled neuronal network, J. Appl. Anal and Computation 2(2012), 2:213-240.
Google Scholar
|
-
-
-