Jaume Llibre, Ammar Makhlouf. THE HILBERT NUMBER OF A CLASS OF DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2015, 5(1): 141-145. doi: 10.11948/2015012
Citation: |
Jaume Llibre, Ammar Makhlouf. THE HILBERT NUMBER OF A CLASS OF DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2015, 5(1): 141-145. doi: 10.11948/2015012
|
THE HILBERT NUMBER OF A CLASS OF DIFFERENTIAL EQUATIONS
-
1 Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain;
-
2 Department of mathematics, UBMA University Annaba, Elhadjar, BP12, Annaba, Algeria
-
Abstract
The notion of Hilbert number from polynomial differential systems in the plane of degree n can be extended to the differential equations of the form dr/dθ=(a(θ))/???20150112??? aj(θ)rj (∗) defined in the region of the cylinder (θ, r) ∈ S1×R where the denominator of (∗) does not vanish. Here a, a0, a1,…, an are analytic 2π-periodic functions, and the Hilbert number H(n) is the supremum of the number of limit cycles that any differential equation (∗) on the cylinder of degree n in the variable r can have. We prove that H(n)=∞ for all n ≥ 1.
-
-
References
[1]
|
A. Gasull, De les equacions diferencials d'Abel al problema XVI de Hilbert, Bull. Soc. Catalana de Math., 28(2013), 123-146(in Catalan).
Google Scholar
|
[2]
|
I.S. Gradhteyn and I.M. Ryzhik Table of integrals, series, and products, Seventh edition, Academic Press, 2007.
Google Scholar
|
[3]
|
D. Hilbert, Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. G"ttingen Math. Phys. KL. (1900), 253-297; English transl.,Bull. Amer. Math. Soc., 8(1902), 437-479.
Google Scholar
|
[4]
|
Yu. Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. (New Series) Amer. Math. Soc., 39(2002), 301-354.
Google Scholar
|
[5]
|
J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13(2003), 47-106.
Google Scholar
|
[6]
|
A. Lins Neto, On the number of solutions of the equation dx/dt=∑j=0n aj(t)xj, 0≤ t ≤ 1, for which x(0)=x(1), Inventiones math., 59(1980), 67-76.
Google Scholar
|
[7]
|
J. Llibre and G. Swirszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst., 18(2011), 203-214.
Google Scholar
|
[8]
|
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext Springer Verlag, 1996.
Google Scholar
|
-
-
-