2015 Volume 5 Issue 2
Article Contents

Jiamin Wei, Yongguang Yu, Sha Wang. PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM[J]. Journal of Applied Analysis & Computation, 2015, 5(2): 232-242. doi: 10.11948/2015021
Citation: Jiamin Wei, Yongguang Yu, Sha Wang. PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM[J]. Journal of Applied Analysis & Computation, 2015, 5(2): 232-242. doi: 10.11948/2015021

PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM

  • Fund Project:
  • It is of great importance to estimate the unknown parameters and time delays of chaotic systems in control and synchronization. This paper is concerned with the uncertain parameters and time delays of chaotic systems corrupted with random noise. Parameters and time delays of such chaotic systems are estimated based on the improved particle swarm optimization algorithm for its global searching ability. Numerical simulations are given to show satisfactory results.
    MSC: 34F05;34G20;65K05
  • 加载中
  • [1] M.A. Abido, Optimal design of power-system stabilizers using particle swarm optimization, IEEE Transactions on Energy Conversion, 17(3)(2002), 406-413.

    Google Scholar

    [2] A. Chen, J. Lu and S. Yu, Generating hyperchaotic L attractor via state feedback control, Physica A, 364(2006), 103-110.

    Google Scholar

    [3] M. Chen and J. Kurths, Chaos synchronization and parameter estimation from a scalar output signal, Phys. Rev. E., doi:10.1103/PhysRevE.76.027203(2007).

    Google Scholar

    [4] Y.P. Chang and C.N. Ko, APSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters, Expert Syst. Appl., 36(3)(2009), 6809-6816.

    Google Scholar

    [5] F. Gao, J.J. Lee and Z.Q. Li, Parameter estimation for chaotic system with initial random noises by particle swarm optimization, Chaos, Solitons & Fractals, 42(2)(2009), 1286-1291.

    Google Scholar

    [6] F. Gao and Y.B. Qi, A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises, Expert Syst. Appl., 39(2)(2012), 1779-1783.

    Google Scholar

    [7] L. Huang, M. Wang and R. Feng, Parameters identification and adaptive synchronization of chaotic systems with unknown parameters, Phys. Lett. A., 342(2005), 299-304.

    Google Scholar

    [8] J. Kennedy and R.C. Eberthart, Particle swarm optimization, Proc IEEE Int Conf on Neural Networks, Piscataway, 4(1995), 1942-1948.

    Google Scholar

    [9] Y. Li, W.K.S. Tang and G. Chen, Generating hyperchaos via state feedback control, Int J Bifurcation Chaos, 15(2005), 3367-3375.

    Google Scholar

    [10] Y.L. Lin, W.D. Chang and J.G. Hsieh, A particle swarm optimization approach to nonlinear rational filter modeling, Expert Syst. Appl., 34(2008), 1194-1199.

    Google Scholar

    [11] B. Liu, L. Wang and Y.H. Jin, Improved particle swarm optimization combined with chaos, Chaos, Solitons & Fractals, 28(2004), 1261-1271.

    Google Scholar

    [12] H. Modares, A. Alfi and M. Fateh, Parameter identification of chaotic dynamic systems through an improved particle swarm optimization, Expert Syst. Appl., 37(2010), 3714-3720.

    Google Scholar

    [13] S. Mukhopadhyay and S. Banerjee, Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization, Expert Syst. Appl., 39(2012), 917-924.

    Google Scholar

    [14] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197(4300)(1977), 287-289.

    Google Scholar

    [15] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 1993.

    Google Scholar

    [16] O.E. Rössler, An equation for hyperchaos, Phys. Lett. A, 71(1979), 155-157.

    Google Scholar

    [17] O.E. Rössler, Continuous chaos-four prototype equations, Ann NY Acad Sci, 316(1979), 376-392.

    Google Scholar

    [18] L.F. Shampine and M.W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18(1997), 1-22.

    Google Scholar

    [19] L.F. Shampine and S. Thompson, Solving delay differential equations with dde23, Applied Numerical Mathematics, 37(2001), 441-458.

    Google Scholar

    [20] C. Tao, Y. Zhang and J.J. Jiang, Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm, Phys. Rev. E., doi:10.1103/PhysRevE.76.016209(2007).

    Google Scholar

    [21] J. Tien and T.S. Li, Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems, Comput. Math. Appl., 64(2012), 1108-1119.

    Google Scholar

    [22] Y. Tang, X. Zhang, C. Hua and L. Li, Y. Yang, Parameter identification of commensurate fractional-order chaotic system via differential evolution, Phys. Lett. A., 376(2012), 457-464.

    Google Scholar

    [23] X.Y. Wang and M.J. Wang, Hyperchaotic Lorenz system, Acta Physica Sinica, 56(9)(2007), 5136-5141.

    Google Scholar

Article Metrics

Article views(37338) PDF downloads(1253) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint