[1]
|
M.A. Abido, Optimal design of power-system stabilizers using particle swarm optimization, IEEE Transactions on Energy Conversion, 17(3)(2002), 406-413.
Google Scholar
|
[2]
|
A. Chen, J. Lu and S. Yu, Generating hyperchaotic L attractor via state feedback control, Physica A, 364(2006), 103-110.
Google Scholar
|
[3]
|
M. Chen and J. Kurths, Chaos synchronization and parameter estimation from a scalar output signal, Phys. Rev. E., doi:10.1103/PhysRevE.76.027203(2007).
Google Scholar
|
[4]
|
Y.P. Chang and C.N. Ko, APSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters, Expert Syst. Appl., 36(3)(2009), 6809-6816.
Google Scholar
|
[5]
|
F. Gao, J.J. Lee and Z.Q. Li, Parameter estimation for chaotic system with initial random noises by particle swarm optimization, Chaos, Solitons & Fractals, 42(2)(2009), 1286-1291.
Google Scholar
|
[6]
|
F. Gao and Y.B. Qi, A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises, Expert Syst. Appl., 39(2)(2012), 1779-1783.
Google Scholar
|
[7]
|
L. Huang, M. Wang and R. Feng, Parameters identification and adaptive synchronization of chaotic systems with unknown parameters, Phys. Lett. A., 342(2005), 299-304.
Google Scholar
|
[8]
|
J. Kennedy and R.C. Eberthart, Particle swarm optimization, Proc IEEE Int Conf on Neural Networks, Piscataway, 4(1995), 1942-1948.
Google Scholar
|
[9]
|
Y. Li, W.K.S. Tang and G. Chen, Generating hyperchaos via state feedback control, Int J Bifurcation Chaos, 15(2005), 3367-3375.
Google Scholar
|
[10]
|
Y.L. Lin, W.D. Chang and J.G. Hsieh, A particle swarm optimization approach to nonlinear rational filter modeling, Expert Syst. Appl., 34(2008), 1194-1199.
Google Scholar
|
[11]
|
B. Liu, L. Wang and Y.H. Jin, Improved particle swarm optimization combined with chaos, Chaos, Solitons & Fractals, 28(2004), 1261-1271.
Google Scholar
|
[12]
|
H. Modares, A. Alfi and M. Fateh, Parameter identification of chaotic dynamic systems through an improved particle swarm optimization, Expert Syst. Appl., 37(2010), 3714-3720.
Google Scholar
|
[13]
|
S. Mukhopadhyay and S. Banerjee, Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization, Expert Syst. Appl., 39(2012), 917-924.
Google Scholar
|
[14]
|
M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197(4300)(1977), 287-289.
Google Scholar
|
[15]
|
E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 1993.
Google Scholar
|
[16]
|
O.E. Rössler, An equation for hyperchaos, Phys. Lett. A, 71(1979), 155-157.
Google Scholar
|
[17]
|
O.E. Rössler, Continuous chaos-four prototype equations, Ann NY Acad Sci, 316(1979), 376-392.
Google Scholar
|
[18]
|
L.F. Shampine and M.W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18(1997), 1-22.
Google Scholar
|
[19]
|
L.F. Shampine and S. Thompson, Solving delay differential equations with dde23, Applied Numerical Mathematics, 37(2001), 441-458.
Google Scholar
|
[20]
|
C. Tao, Y. Zhang and J.J. Jiang, Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm, Phys. Rev. E., doi:10.1103/PhysRevE.76.016209(2007).
Google Scholar
|
[21]
|
J. Tien and T.S. Li, Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems, Comput. Math. Appl., 64(2012), 1108-1119.
Google Scholar
|
[22]
|
Y. Tang, X. Zhang, C. Hua and L. Li, Y. Yang, Parameter identification of commensurate fractional-order chaotic system via differential evolution, Phys. Lett. A., 376(2012), 457-464.
Google Scholar
|
[23]
|
X.Y. Wang and M.J. Wang, Hyperchaotic Lorenz system, Acta Physica Sinica, 56(9)(2007), 5136-5141.
Google Scholar
|