[1]
|
A. Afsharfard and A. Farshidianfar, Free vibration analysis of nonlinear resilient impact dampers, Nonlinear Dyn., 73(2013), 155-166.
Google Scholar
|
[2]
|
D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, Long man Scientific & Technical, New York, 1993.
Google Scholar
|
[3]
|
P. Casini, O. Giannini and F. Vestroni, Experimental evidence of non-standard bifurcations in non-smooth oscillator dynamics, Nonlinear Dyn., 46(2006), 259-272.
Google Scholar
|
[4]
|
S.N. Chow and S.W. Shaw, Bifurcations of subharmonics, J. Differential Equation, 65(1986), 304-320.
Google Scholar
|
[5]
|
F.S. Collette, A combined tuned absorber and pendulum impact damper under random excitation, J. Franklin Institute, 216(1998), 199-213.
Google Scholar
|
[6]
|
Z.D. Du and W.N. Zhang, Melnikov method for homoclinic bifurcation in nonlinear impact oscillators, Comput. Math. Appl., 50(2005), 445-458.
Google Scholar
|
[7]
|
W.C. Ding, G.F. Li, G.W. Luo and J.H. Xie, Torus T2 and its locking, doubling, chaos of a vibro-impact system, J. Franklin Institute, 349(2012), 337-348.
Google Scholar
|
[8]
|
M.F. Dimentberg and D.V. Iourtchenko, Stochastic and/or chaotic response of a vibration system to imperfectly periodic sinusoidal excitation, Int. J. Bifurcation Chaos, 15(2005), 2057-2061.
Google Scholar
|
[9]
|
Z. Feng, Duffing-van der Pol-type oscillator systems, Discrete Contin. Dyn. Syst. (Series S), 7(2014), 1231-1257.
Google Scholar
|
[10]
|
Z. Feng and Q.G. Meng, First integrals for the damped Helmholtz oscillator, Int. J. Comput. Math., 87(2010), 2798-2810.
Google Scholar
|
[11]
|
R. Giannini and R. Masiani, Non-Gaussian solution for random rocking of slender rigid block, Prob. Eng. Mech., 11(1996), 87-96.
Google Scholar
|
[12]
|
C.B. Gan and H. Lei, Stochastic dynamical analysis of a kind of vibro-impact system under multiple harmonic and random excitations, J. Sound Vibration, 330(2011), 2174-2184.
Google Scholar
|
[13]
|
P. Holmes, R.J. Full, D. Koditschek and J. Guckenheimer, Dynamics of legged locomotion:models, analysis and challenges, SIAM Rev., 48(2006), 207-304.
Google Scholar
|
[14]
|
A. Ivanov, Bifurcations in impact systems, Chaos, Solitons & Fractals 7(1996), 1615-1634.
Google Scholar
|
[15]
|
G.W. Luo and J.H. Xie, Hopf bifurcations and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases, Int. J. Non-lin. Mech., 37(2002), 19-34.
Google Scholar
|
[16]
|
A.C. Luo and L.D. Chen, Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts, Chaos, Solitons & Fractals, 24(2005), 567-578.
Google Scholar
|
[17]
|
S. Lenci and G. Rega, Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation, Chaos Solitons Fractals, 11(2000), 2453-2472.
Google Scholar
|
[18]
|
B.P. Mann, R.E. Carter and S.S. Hazra, Experimental study of an impact oscillator with viscoelastic and Hertzian contact, Nonlinear Dyn., 50(2007), 587-296.
Google Scholar
|
[19]
|
S.Q. Ma, Q.S. Lu and Z. Feng, Double Hopf bifurcation for van der PolDuffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338(2008), 993-1007.
Google Scholar
|
[20]
|
A.B. Nordmark, Effects due to low velocity impact in mechanical oscillators, Int. J. Bifurcation Chaos, 2(1992), 597-605.
Google Scholar
|
[21]
|
F. Peterka, Bifurcations and transition phenomena in an impact oscillator, Chaos, Solitons & Fractals, 7(1996), 1635-1647.
Google Scholar
|
[22]
|
S.W. Shaw and R.H. Rand, The transition to chaos in a simple mechanical system, Int. J. Non-lin. Mech., 24(1989), 41-56.
Google Scholar
|
[23]
|
J. Shen and Z.D. Du, Double impact periodic orbits for an inverted pendulum, Int. J. Non-lin. Mech., 46(2011), 1177-1190.
Google Scholar
|
[24]
|
G.S. Whiston, An analytical model of two-dimensional impact/sliding response to harmonic excitation, J. Sound Vibration, 86(1983), 557-562.
Google Scholar
|