[1]
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York and Berlin, 1998.
Google Scholar
|
[2]
|
A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discr. Contin. Dyn. Syst., 18(2013), 643-666.
Google Scholar
|
[3]
|
P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reactiondiffusion equations on unbounded domains, J. Diff. Eq., 246(2009), 845-869.
Google Scholar
|
[4]
|
F. Chen, B. Guo and P. Wang, Long time behavior of strongly damped nonlinear wave equations, J. Diff. Eq., 147(1998), 339-352.
Google Scholar
|
[5]
|
H. Crauel, Random Probability Measure on Polish Spaces, Taylor & Francis, London, 2002.
Google Scholar
|
[6]
|
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eq., 9(1997), 307-341.
Google Scholar
|
[7]
|
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100(1994), 365-393.
Google Scholar
|
[8]
|
P. Chow, Stochastic wave equation with polynomial nonlinearity, Ann. Appl. Probab., 12(2002), 361-381.
Google Scholar
|
[9]
|
T. Caraballo, J. A. Langa, V.S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11(2003), 153-201.
Google Scholar
|
[10]
|
I. Chueshov, Monotone Random Systems Theory and Applications, SpringerVerlag, New York, 2002.
Google Scholar
|
[11]
|
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31(2003), 2109-2135.
Google Scholar
|
[12]
|
J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1(2003), 133-151.
Google Scholar
|
[13]
|
X. Fan, Random attractor for a damped sine-Gordon equation with white noise, Pacific J. Math., 216(2004), 63-76.
Google Scholar
|
[14]
|
X. Fan and Y. Wang, Fractal dimensional of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25(2007), 381-396.
Google Scholar
|
[15]
|
X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Int. J. Math., 19(2008), 421-437.
Google Scholar
|
[16]
|
F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic NavierStokes equation with multiplicative noise, Stoch. Stoch. Rep., 59(1996), 21-45.
Google Scholar
|
[17]
|
J. M. Ghidaglia and A. Marzocchi, Longtime behavior of strongly damped nonlinear wave equations, global attractors and their dimension, SIAM. J. Math. Anal., 22(1991), 879-895.
Google Scholar
|
[18]
|
R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. RWA, 14(2013), 1308-1322.
Google Scholar
|
[19]
|
V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Diff. Eq., 48(2009), 1120-1155.
Google Scholar
|
[20]
|
H. Li and S. Zhou, One-dimensional global attractor for strongly damped wave equations, Commun. Nonlinear Sci. Numer. Simul., 12(2007), 784-793.
Google Scholar
|
[21]
|
H. Li and S. Zhou, On non-autonomous strongly damped wave equations with a uniform attractor and some averaging, J. Math. Anal. Appl., 341(2008), 791-802.
Google Scholar
|
[22]
|
K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations. J. Diff. Eq., 236(2007), 460-492.
Google Scholar
|
[23]
|
Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Diff. Eq., 244(2008), 1-23.
Google Scholar
|
[24]
|
P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Diff. Eq., 48(1983), 334-349.
Google Scholar
|
[25]
|
A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
Google Scholar
|
[26]
|
Z. Shen, S. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Diff. Eq., 248(2010), 1432-1457.
Google Scholar
|
[27]
|
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1998.
Google Scholar
|
[28]
|
B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discr. Contin. Dyn. Syst. Syst Special, (2009), 800-809.
Google Scholar
|
[29]
|
X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications, Physica D, 88(1995), 167-175.
Google Scholar
|
[30]
|
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3, Trans. Amer. Math. Soc., 363(2011), 3639-3663.
Google Scholar
|
[31]
|
Z. Wang, S. Zhou and A. Gu. Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul., 17(2012), 1649-1658.
Google Scholar
|
[32]
|
Z. Wang, S. Zhou and A. Gu. Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. RWA, 12(2011), 3468-3482.
Google Scholar
|
[33]
|
B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discr. Contin. Dyn. Syst., 34(2014), 269-303.
Google Scholar
|
[34]
|
B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains, E. J. Diff. Eq., 2012(2012), 1-18.
Google Scholar
|
[35]
|
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Diff. Eq., 253(2012), 1544-1583.
Google Scholar
|
[36]
|
M. Yang and C. Sun, Attractors for strongly damped wave equations, Nonlinear Anal. RWA, 10(2009), 1097-1100.
Google Scholar
|
[37]
|
M. Yang and C. Sun, Dynamics of strongly damped wave equations in locally uniform spaces:Attractors and asymptotic regularity, Tran. Amer. Math. Soc., 361(2009), 1069-1101.
Google Scholar
|
[38]
|
M. Yang and C. Sun, Exponential attractors for the strongly damped wave equations, Nonlinear Anal. RWA, 11(2010), 913-919.
Google Scholar
|
[39]
|
M. Yang, J. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. RWA, 12(2011), 464-478.
Google Scholar
|
[40]
|
S. Zhou, Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233(1999), 102-115.
Google Scholar
|
[41]
|
S. Zhou and X. Fan, Kernel sections for non-autonomous strongly damped wave equations, J. Math. Anal. Appl., 275(2002), 850-869.
Google Scholar
|
[42]
|
S. Zhou, Attractors for strongly damped wave equations with critical exponent, Appl. Math. Lett., 16(2003), 1307-1314.
Google Scholar
|
[43]
|
S. Zhou, F. Yin and Z. OuYang, Random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst., 4(2005), 883-903.
Google Scholar
|