2015 Volume 5 Issue 3
Article Contents

Erhan Deniz, Halit Orhan. LOEWNER CHAINS AND UNIVALENCE CRITERIA RELATED WITH RUSCHEWEYH AND SĂLĂGEAN DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2015, 5(3): 465-478. doi: 10.11948/2015036
Citation: Erhan Deniz, Halit Orhan. LOEWNER CHAINS AND UNIVALENCE CRITERIA RELATED WITH RUSCHEWEYH AND SĂLĂGEAN DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2015, 5(3): 465-478. doi: 10.11948/2015036

LOEWNER CHAINS AND UNIVALENCE CRITERIA RELATED WITH RUSCHEWEYH AND SĂLĂGEAN DERIVATIVES

  • In this paper we obtain, by the method of Loewner chains, some sufficient conditions for the analyticity and the univalence of the functions defined by an integral operator. These conditions involves Ruscheweyh and Sălăgean derivative operator in the open unit disk. In particular cases, we find the well-known conditions for univalency established by Becker[3], Ahlfors[2], Kanas and Srivastava[8] and others for analytic mappings f:U → C:Also, we obtain the corresponding new, useful and simpler conditions for this integral operator.
    MSC: 30C45;30C55
  • 加载中
  • [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17(1915), 12-22.

    Google Scholar

    [2] L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Ann. Math. Studies., 79(1974), 23-29.

    Google Scholar

    [3] J. Becker, Löwnersche differential gleichung und quasikonform fortsetzbare schlichte functionen, J. Reine Angew. Math., 255(1972), 23-43.

    Google Scholar

    [4] E. Deniz and H. Orhan, Some notes on extensions of basic univalence criteria, J. Korean Math. Soc., 48(1)(2011), 179-189.

    Google Scholar

    [5] E. Deniz, D. Răducanu and H. Orhan, On an improvement of an univalence criterion, Math. Balkanica (N.S.), 24(1-2)(2010), 33-39.

    Google Scholar

    [6] I. Hotta, Löwner chains with complex leading coefficient, Monatsh Math., 163(3)(2011), 315-325.

    Google Scholar

    [7] I. Hotta, Explicit quasiconformal extensions and Loewner chains, Proc. Japan Acad. Ser. A., 85(2009), 108-111.

    Google Scholar

    [8] S. Kanas and H. M. Srivastava, Some criteria for univalence related to Ruscheweyh and Sălăgean derivatives, Complex Variables Theory Appl., 38(3)(1997), 263-275.

    Google Scholar

    [9] S. Kanas and A. Lecko, Univalence criteria connected with arithmetic and geometric means. I, Proc. of the Second Workshop on Transform Methods and Special Functions (Varna, 1996), Science Culture Technology Publishing Company, Singapore, (1998), 201-209.

    Google Scholar

    [10] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Imp. Univ. Jap., 1(2)(1934-1935), 129-155.

    Google Scholar

    [11] H. Ovesea, A generalization of Ruscheweyh's univalence criterion, J. Math. Anal. Appl., 258(2001), 102-109.

    Google Scholar

    [12] N. N. Pascu, Sufficient conditions for univalence, Seminar on Geometric Functions Theory, (Preprint), 5(1986), 119-122.

    Google Scholar

    [13] Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew Math., 218(1965), 159-173.

    Google Scholar

    [14] Ch. Pommerenke, Univalent Functions, Vandenhoeck Ruprecht in Göttingen, 1975.

    Google Scholar

    [15] D. Răducanu, H. Orhan and E. Deniz, On some sufficient conditions for univalence, An. Ştiint Univ. "Ovidius" Constanta Ser. Mat., 18(2)(2010), 217-222.

    Google Scholar

    [16] S. Ruscheweyh, New criteria for univalent functions. Proc. Amer. Math. Soc., 49(1975), 109-115.

    Google Scholar

    [17] S. Ruscheweyh, An extension of Becker's univalence condition, Math. Ann., 220(1976), 285-290.

    Google Scholar

    [18] G. S. Sălăgean, Subclasses of univalent functions, Lecture notes in Math. (Springer-Verlag), 1013(1983), 362-372.

    Google Scholar

    [19] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientifc Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

    Google Scholar

    [20] S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc., 38(1935), 310-340.

    Google Scholar

Article Metrics

Article views(2202) PDF downloads(957) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint