[1]
|
P. L. Duren, Univalent Functions, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
Google Scholar
|
[2]
|
A. W. Goodman, Univalent Functions, Washington, New Jersey, Polygonal Publishing House, 1983.
Google Scholar
|
[3]
|
H. Irmak and B. A. Frasin, A few complex equations constituted by an operator consisting of fractional calculus and their consequences, Chin. J Math. (N.Y.), 2014(2014), Article ID 718389, 4 pages, doi:10.1155/2014/718389.
Google Scholar
|
[4]
|
H. Irmak, Some relations between certain complex equations and nonnormalized meromorphic functions, J. Math., 2014(2014), Article ID 502572, 5 pages, doi:10.1155/2014/502572.
Google Scholar
|
[5]
|
H. Irmak and M. Şan, Some relations between certain inequalities concerning analytic and univalent functions, Appl. Math. Lett., 23(2010), 897-901.
Google Scholar
|
[6]
|
H. Irmak, T. Bulboaca and N. Tuneski, Some relations between certain classes consisting of α-convex type and Bazilevic type functions, Appl. Math. Lett., 24(2011), 2010-2014.
Google Scholar
|
[7]
|
S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, New York-Basel, Marcel Dekker, 2000.
Google Scholar
|
[8]
|
P. T. Mocanu, Two simple sufficient conditions for starlikenes, Mathematica (Cluj), 34(1992), 175-181.
Google Scholar
|
[9]
|
M. Obradovic, Simple sufficient conditions for univalence, Mat. Vesnik, 49(1997), 241-244.
Google Scholar
|
[10]
|
S. Ponnusamy and V. Singh, Criteria for univalent, starlike and convex functions, Bull. Belg. Math. Soc. Simon Stevin, 9(2002), 511-531.
Google Scholar
|
[11]
|
H. M. Srivastava and S. Owa, Current Topics in Analytic Function Theory, Singapore, New Jersey, London, and Hong Kong, World Scientific Publishing Company, 1992.
Google Scholar
|
[12]
|
N. Tuneski, On some simple sufficient conditions for univalence, Math. Bohem., 126(2001), 229-236.
Google Scholar
|