[1]
|
S.N. Chow and J.K. Hale, Method of Bifurcation Theory, Springer, New York 1981.
Google Scholar
|
[2]
|
M.C. Cosgrove, Higher-order Painleve equations in the polynomial class I. Bureau symbol P2, Stud. Appl. Math., 104(1) (2000), 1-65.
Google Scholar
|
[3]
|
A.Y. Chen, S.Q.Wen and W.T. Huang, existence and orbital stability of periodic wave solutions for the nonlinear Schodinger equation, J. Appl. Anal. Comp., 2(2) (2012), 137-148.
Google Scholar
|
[4]
|
P.J. Caudrey, R. K. Dodd and J.D.Gibbon, A new hierarchy of Korteweg-de Vries equation. Proc. Roy. Soc. Lond. A., 351(1976), 407-422.
Google Scholar
|
[5]
|
C. A. Gmez and A. H. Salas, The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Appl. Math. Comput., 217(2010), 1408-1414.
Google Scholar
|
[6]
|
I.S. Gradshteyn and I. M.Ryzhik, Table of Integrals, Series, and Products, Sixth Edition, Academic Press, New York 2000.
Google Scholar
|
[7]
|
J. Guckenheimer and P. Holmes, Dynamical Systems and Bifurcations Of Vector Fields, Springer, New York 1983.
Google Scholar
|
[8]
|
W. Hereman and A. Nuseir, Symbolic methods to Construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulat., 43(1997), 13-27.
Google Scholar
|
[9]
|
M. Ito, An extension of nonlinear evolution equations of the KdV(MKdV) type to higher orders, J. Phys. Soc. Jpn., 49(1980), 771-778.
Google Scholar
|
[10]
|
M. Inc, On numerical soliton solution of the Kaup-Kupershmidt equation and convergence analysis of the decomposition method, Appl. Math. Comput., 172(2006), 72-85.
Google Scholar
|
[11]
|
B.A. Kupershmidt, A super Korteweg-de Virs equation:an integrable system, Phys. Lett. A., 102(1984), 213-215.
Google Scholar
|
[12]
|
J.B. Li, Singular Traveling Wave Equations:Bifurcations and Exact Solutions, Science Press, Beijing 2013.
Google Scholar
|
[13]
|
J.B. Li and G. R. Chen, Bifurcations of traveling wave solutions for four classes of nonlinear wave equations, Int. J. Bifurc. Chaos., 15(12) (2005), 3973-3998.
Google Scholar
|
[14]
|
J.B. Li and Z.J. Qiao, Explicit solutions of the Kaup-Kuperschmidt equation through the dynamical system Approach, J. Appl. Anal. Comp.,1(2)(2011), 243-250.
Google Scholar
|
[15]
|
A. Parker, On soliton solutions of the Kaup-Kupershmidt equation. I. Direct bilinearisation and solitary wave, Physica D., 137(2000), 25-33.
Google Scholar
|
[16]
|
A. Parker, On soliton solutions of the Kaup-Kupershmidt equation. Ⅱ. Anomalous N-soliton solutions, Physica D, 137(2000), 34-48.
Google Scholar
|
[17]
|
W.G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simulat., 18(2013), 2667-2678.
Google Scholar
|
[18]
|
K. Sawada and T. Kotera, A method for finding N-soliton solutions for the KdV equation and KdV-like equation, Prog. Theory. Phys., 51(5) (1974), 1355-1367.
Google Scholar
|
[19]
|
Z. Sun, W. Zhang, T. He and C. Gao, The uniform method to the solutions of type of the fifth-order Sawada-Kotera equations, Nonlinear Func. Anal. and Appl, 18(4) (2013), 523-533.
Google Scholar
|
[20]
|
Y. Wang and Q. Bi, Different wave solutions associated with singular lines on phase plane, Nonlinear Dyn., 69(2012), 1705-1731.
Google Scholar
|