2015 Volume 5 Issue 4
Article Contents

Lifeng Guo. THE DIRICHLET PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS ON RIEMANNIAN MANIFOLDS[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 562-569. doi: 10.11948/2015043
Citation: Lifeng Guo. THE DIRICHLET PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS ON RIEMANNIAN MANIFOLDS[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 562-569. doi: 10.11948/2015043

THE DIRICHLET PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS ON RIEMANNIAN MANIFOLDS

  • Fund Project:
  • In this paper, after discussing the properties of the Nemytsky operator, we obtain the existence of weak solutions for Dirichlet problemss of non-homogeneous p(m)-harmonic equations.
    MSC: 30G35;58J05;35J60;35D30
  • 加载中
  • [1] E. Acerbi, G. Mingione and G. A. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(1)(2004), 25-60.

    Google Scholar

    [2] J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306(2005), 604-618; J. Math. Anal. Appl., 323(2006), 1483(Erratum).

    Google Scholar

    [3] K. C. Chang, Critical Point Theory and Applications, Shanghai Scientic and Technology Press, Shanghai, 1986.

    Google Scholar

    [4] D. V. Cruz-Uribe SFO and A. Fiorenza, Variable Lebesgue Spaces, Springer, 2013.

    Google Scholar

    [5] L. Diening, P. Harjulehto, P. Hästö, and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.

    Google Scholar

    [6] D. Edmunds, J. Lang, and A. Nekvinda,On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1999), 219-225.

    Google Scholar

    [7] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl., 263(2001), 424-446.

    Google Scholar

    [8] X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52(2003), 184-1852.

    Google Scholar

    [9] Y. Fu and X. Zhang, Multiple solutions for a class of p(x)-Laplacian equations in involving the critical exponent, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466(2118)(2010), 1667-1686.

    Google Scholar

    [10] Y. Fu and L. Guo, Variable Exponent Spaces of Differential Forms on Riemannian Manifold, Journal of Function Spaces and Applications, Article ID 575819(2012).

    Google Scholar

    [11] O. Kováčik and J. Rákosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41(1991), 592-618.

    Google Scholar

    [12] M. Mihǎilescu and V. Rǎdulescu,A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A, 462(2006), 2625-2641.

    Google Scholar

    [13] W. Rudin,Real and Complex Analysis, New York:McGraw-Hill, 1987.

    Google Scholar

    [14] M. Ružička,Electrorheological Fluids:Modeling and Mathematical Theory, Springer, 2000.

    Google Scholar

    [15] F. D. Thelin, Local regularity properties for the solutions of a nonlinear partial differential equation, Nonlinear Anal., 6(1982), 839-844.

    Google Scholar

    [16] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco/London/Amsterdam, 1964.

    Google Scholar

    [17] V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, 29(1987), 33-66.

    Google Scholar

Article Metrics

Article views(2957) PDF downloads(2095) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint