[1]
|
E. Acerbi, G. Mingione and G. A. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(1)(2004), 25-60.
Google Scholar
|
[2]
|
J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306(2005), 604-618; J. Math. Anal. Appl., 323(2006), 1483(Erratum).
Google Scholar
|
[3]
|
K. C. Chang, Critical Point Theory and Applications, Shanghai Scientic and Technology Press, Shanghai, 1986.
Google Scholar
|
[4]
|
D. V. Cruz-Uribe SFO and A. Fiorenza, Variable Lebesgue Spaces, Springer, 2013.
Google Scholar
|
[5]
|
L. Diening, P. Harjulehto, P. Hästö, and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.
Google Scholar
|
[6]
|
D. Edmunds, J. Lang, and A. Nekvinda,On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1999), 219-225.
Google Scholar
|
[7]
|
X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl., 263(2001), 424-446.
Google Scholar
|
[8]
|
X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52(2003), 184-1852.
Google Scholar
|
[9]
|
Y. Fu and X. Zhang, Multiple solutions for a class of p(x)-Laplacian equations in involving the critical exponent, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466(2118)(2010), 1667-1686.
Google Scholar
|
[10]
|
Y. Fu and L. Guo, Variable Exponent Spaces of Differential Forms on Riemannian Manifold, Journal of Function Spaces and Applications, Article ID 575819(2012).
Google Scholar
|
[11]
|
O. Kováčik and J. Rákosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41(1991), 592-618.
Google Scholar
|
[12]
|
M. Mihǎilescu and V. Rǎdulescu,A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A, 462(2006), 2625-2641.
Google Scholar
|
[13]
|
W. Rudin,Real and Complex Analysis, New York:McGraw-Hill, 1987.
Google Scholar
|
[14]
|
M. Ružička,Electrorheological Fluids:Modeling and Mathematical Theory, Springer, 2000.
Google Scholar
|
[15]
|
F. D. Thelin, Local regularity properties for the solutions of a nonlinear partial differential equation, Nonlinear Anal., 6(1982), 839-844.
Google Scholar
|
[16]
|
M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco/London/Amsterdam, 1964.
Google Scholar
|
[17]
|
V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, 29(1987), 33-66.
Google Scholar
|