[1]
|
S. Aoki, K. Amaya, M. Sahashi, T. Nakamura, Identification of Gursons material constants by using Kalman filter, Comput. Mech. 19(1997), 501-506.
Google Scholar
|
[2]
|
A. E. Babaev, I. V. Yanchevskii, Identification of the shock load on an electroelastic bimorph disk, Int. Appl. Mech. 47(2011), 560-566.
Google Scholar
|
[3]
|
H.T. Banks, F. Kojima, Boundary shape identification problems in twodimensional domains related to thermal testing of materials Quart Appl Math, 47(1989), 273-293.
Google Scholar
|
[4]
|
J. Baumeister, Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1986.
Google Scholar
|
[5]
|
J.F. Doyle, Force identification from dynamic responses of a biomaterial beam, Experimental Mechanics, 33(1993), 64-69.
Google Scholar
|
[6]
|
H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.
Google Scholar
|
[7]
|
C.R. Farrar, H. Sohn, F.M. Hemez, M.C. Anderson, M.T. Bement, P.J. Cornwell, S.W. Doebling, N. Lieven, A.N. Robertson, J.F. Schultze, Damage prognosis:Current status and future needs, Los Alamos National Laboratory, Report LA-14051-MS,2003.
Google Scholar
|
[8]
|
M. Hanke, P.C. Hansen, Regularization methods for large-scale problems, Soviet mathematics-Doklady, 3(1993), 253-315.
Google Scholar
|
[9]
|
B. Hofmann, Regularization for Applied Inverse and Ill-Posed Problems (Teubner-Texte zur Mathematik:Vol. 85), Leipzig:B. G. Teubner Verlagsges, 1986.
Google Scholar
|
[10]
|
D. Issaeson, Distinguish ability of conductivities by electrical current computed tomograpgy, IEEE Trans Medical Imaging MI-5, 1986, 91-95.
Google Scholar
|
[11]
|
T. Lauwagie, H. Sol, G. Roebben, W. Heylen, Y. Shi, Validation of the Resonalyser method:an inverse method for material identification, Proceedings of ISMA, Ⅱ(2002), 687-694.
Google Scholar
|
[12]
|
G.R. Liu, X. Han, Computational Inverse Technique in Nondestructive Evaluation, CRC Press, Florida, 2003.
Google Scholar
|
[13]
|
G.R. Liu, X. Han, K.Y. Lam, Material characterization of FGM plates using elastic waves and an inverse procedure, J. Compos. Mater., 35(11)2001, 954-971.
Google Scholar
|
[14]
|
G.R. Liu, W.B. Ma, X. Han, An inverse procedure for identification of loads on composite laminates, Composites Part B (Engineering), 33(2002), 425-432.
Google Scholar
|
[15]
|
J. Liu, X. S. Sun, X. Han et al., A novel computational inverse technique for load identification using the shape function method of moving least square fitting, Computers and Structures, 144(2014), 127-137.
Google Scholar
|
[16]
|
A.K. Louis, Inverse Und Schlecht Gestellte Probleme, Teubner, Stuttgart, 1989.
Google Scholar
|
[17]
|
Y.M. Mao, X.L. Guo, Y. Zhao, A state space force identification method based on Markov parameters precise computation and regularization technique, J. Sound Vib., 329(2010), 3008-3019.
Google Scholar
|
[18]
|
H. Ronasi, H. Johansson, F. Larsson, A numerical framework for load identification and regularization with application to rolling disc problem, Comput Struct, 89(2011), 38-47.
Google Scholar
|
[19]
|
X.S. Sun, Liu J, Han X, Jiang C, Chen R, A new improved regularization method for dynamic load identification, Inverse Probl Sci Eng, 22(2014), 1062-1076.
Google Scholar
|
[20]
|
A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4(1963), 1035-1038; English translation of Dokl. Akad. Nauk. SSSR, 151(1963), 501-504.
Google Scholar
|
[21]
|
G. Yan, L. Zhou, Impact load identification of composite structure using genetic algorithms, J Sound Vib, 319(2009), 869-884.
Google Scholar
|
[22]
|
X.Q. Zhu, S.S. Law, Moving load identification on multi-span continuous bridges with elastic bearings, Mechanical Systems and Signal Processing, 20(2006), 1759-1782.
Google Scholar
|