[1]
|
J.P. Antoine, A. Inoue and C. Trapani, Partial ∗-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002.
Google Scholar
|
[2]
|
P. Ara and M. Mathieu, Local Multipliers of C∗-Algebras, Springer-Verlag, London, 2003.
Google Scholar
|
[3]
|
C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica, 22(2006), 1789-1796.
Google Scholar
|
[4]
|
F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi ∗-algebras, Proc. Amer. Math. Soc.,129(2001), 2973-2980.
Google Scholar
|
[5]
|
F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66(1992), 849-866.
Google Scholar
|
[6]
|
F. Bagarello and C. Trapani, States and representations of CQ∗-algebras, Ann. Inst. H. Poincaré, 61(1994), 103-133.
Google Scholar
|
[7]
|
F. Bagarello and C. Trapani, CQ∗-algebras:structure properties, Publ. RIMS Kyoto Univ., 32(1996), 85-116.
Google Scholar
|
[8]
|
F. Bagarello and C. Trapani, Morphisms of certain Banach C∗-modules, Publ. RIMS Kyoto Univ., 36(2000), 681-705.
Google Scholar
|
[9]
|
J. Baker, Isometries in normed spaces, Amer. Math. Monthly, 78(1971), 655-658.
Google Scholar
|
[10]
|
J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc., 96(1986), 221-226.
Google Scholar
|
[11]
|
O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Mechnics I, Springer-Verlag, New York, 1979.
Google Scholar
|
[12]
|
G.O.S. Ekhaguere, Partial W∗-dynamical systems, in Current Topics in Operator Algebras, Proceedings of the Satellite Conference of ICM-90, pp. 202-217, World Scientific, Singapore, 1991.
Google Scholar
|
[13]
|
G. Epifanio and C. Trapani, Quasi-∗-algebras valued quantized fields, Ann. Inst. H. Poincaré, 46(1987), 175-185.
Google Scholar
|
[14]
|
W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 71(2006), 149-161.
Google Scholar
|
[15]
|
K. Fredenhagen and J. Hertel, Local algebras of observables and pointlike localized fields, Commun. Math. Phys., 80(1981), 555-561.
Google Scholar
|
[16]
|
A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62(2001), 303-309.
Google Scholar
|
[17]
|
A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5(2002), 707-710.
Google Scholar
|
[18]
|
R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5(1964), 848-861.
Google Scholar
|
[19]
|
N. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull, 38(1995), 218-222.
Google Scholar
|
[20]
|
C. La Russa and S. Triolo, Radon-Nikodym theorem in quasi ∗-algebras, J. Operator Theory, 69(2013), 423-433.
Google Scholar
|
[21]
|
J. Lee, C. Park and D. Shin, Stability of an additive functional inequality in proper CQ∗-algebras, Bull. Korean Math. Soc., 48(2011), 853-871.
Google Scholar
|
[22]
|
S. Mazur and S. Ulam, Sur les transformation d'espaces vectoriels normé, C.R. Acad. Sci.Paris, 194(1932), 946-948.
Google Scholar
|
[23]
|
G. Morchio and F. Strocchi, Mathematical structures for long range dynamics and symmetry breaking, J. Math. Phys., 28(1987), 622-635.
Google Scholar
|
[24]
|
R. Pallu de la Barriére, Algèbres unitaires et espaces d'Ambrose, Ann. Ecole Norm. Sup., 70(1953), 381-401.
Google Scholar
|
[25]
|
C. Park, Lie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebras, J. Math. Anal. Appl., 293(2004), 419-434.
Google Scholar
|
[26]
|
C. Park, Homomorphisms between Poisson JC∗-algebras, Bull. Braz. Math. Soc., 36(2005), 79-97.
Google Scholar
|
[27]
|
C. Park, Homomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC∗-algebra derivations, J. Lie Theory, 15(2005), 393-414.
Google Scholar
|
[28]
|
C. Park, Isomorphisms between C∗-ternary algebras, J. Math. Phys. 47, no. 10, 103512(2006).
Google Scholar
|
[29]
|
C. Park and J. An, Isometric isomorphisms in proper CQ∗-algebras, Acta Math.Sinica, 25(2009), 1131-1138.
Google Scholar
|
[30]
|
C. Park and D. Boo, Isomorphisms and generalized derivations in proper CQ∗-algebras, J. Nonlinear Sci. Appl., 4(2011), 19-36.
Google Scholar
|
[31]
|
C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordanvon Neumann type additive functional equations, J. Inequal. Appl.,(2007), 41820.
Google Scholar
|
[32]
|
C. Park, G. Z. Eskandani, H. Vaezi and D. Shin, Hyers-Ulam stability of derivations on proper Jordan CQ∗-algebras, J. Inequal. Appl., 2012, Art. No. 2012:114(2012).
Google Scholar
|
[33]
|
C. Park, J. Hou and S. Oh, Homomorphisms between JC∗-algebras and between Lie C∗-algebras, Acta Math.Sinica, 21(2005), 1391-1398.
Google Scholar
|
[34]
|
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
Google Scholar
|
[35]
|
Th.M. Rassias, Properties of isometic mappings, J. Math. Anal. Appl., 235(1997), 108-121.
Google Scholar
|
[36]
|
Th.M. Rassias and P. Šemrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc. Amer. Math. Soc., 118(1993), 919-925.
Google Scholar
|
[37]
|
J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66(2003), 191-200.
Google Scholar
|
[38]
|
S. Sakai, Operator Algebras in Dynamical Systems, Cambridge Univ. Press, Cambridge, 1991.
Google Scholar
|
[39]
|
G.L. Sewell, Quantum Mechanics and its Emergent Macrophysics, Princeton University Press, Princeton and Oxford, 2002.
Google Scholar
|
[40]
|
S. Stratila and L. Szido, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, 1979.
Google Scholar
|
[41]
|
R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That, Benjamin Inc., New York, 1964.
Google Scholar
|
[42]
|
M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Mathematics 128, Springer-Verlag, New York, 1970.
Google Scholar
|
[43]
|
W. Thirring and A. Wehrl, On the mathematical structure of the B.C.S.-model, Commun. Math. Phys., 4(1967), 303-314.
Google Scholar
|
[44]
|
C. Trapani, Quasi-∗-algebras of operators and their applications, Rev. Math. Phys., 7(1995), 1303-1332.
Google Scholar
|
[45]
|
C. Trapani, Some seminorms on quasi-∗-algebras, Studia Math., 158(2003), 99-115.
Google Scholar
|
[46]
|
C. Trapani, Bounded elements and spectrum in Banach quasi ∗-algebras, Studia Math., 172(2006), 249-273.
Google Scholar
|
[47]
|
S. Triolo, WQ∗-algebras of measurable operators, Indian J. Pure Appl. Math., 43(2012), 601-617.
Google Scholar
|