2015 Volume 5 Issue 4
Article Contents

Choonkil Park, Jung Rye Lee, Dong Yun Shin. ISOMORPHISMS,DERIVATIONS AND ISOMETRIES IN PROPER CQ∗-ALGEBRAS[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 635-650. doi: 10.11948/2015050
Citation: Choonkil Park, Jung Rye Lee, Dong Yun Shin. ISOMORPHISMS,DERIVATIONS AND ISOMETRIES IN PROPER CQ-ALGEBRAS[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 635-650. doi: 10.11948/2015050

ISOMORPHISMS,DERIVATIONS AND ISOMETRIES IN PROPER CQ-ALGEBRAS

  • Fund Project:
  • In this paper, we investigate homomorphisms in proper CQ-algebras, proper Lie CQ-algebras and proper Jordan CQ-algebras and derivations on proper CQ-algebras, proper Lie CQ-algebras and proper Jordan CQ-algebras associated with the Cauchy-Jensen functional equation 2f ((x + y)/2 + z)=f(x) + f(y) + 2f(z), which was introduced and investigated in[3, 28].
    Furthermore, Isometries and isometric isomorphisms in proper CQ-algebras are studied.
    MSC: 47N50;47L60;39B52;39B72;47L90;46H35;46B03;47Jxx;17A40;17C65;46K70;47B48;46L05
  • 加载中
  • [1] J.P. Antoine, A. Inoue and C. Trapani, Partial ∗-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002.

    Google Scholar

    [2] P. Ara and M. Mathieu, Local Multipliers of C-Algebras, Springer-Verlag, London, 2003.

    Google Scholar

    [3] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica, 22(2006), 1789-1796.

    Google Scholar

    [4] F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi ∗-algebras, Proc. Amer. Math. Soc.,129(2001), 2973-2980.

    Google Scholar

    [5] F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66(1992), 849-866.

    Google Scholar

    [6] F. Bagarello and C. Trapani, States and representations of CQ-algebras, Ann. Inst. H. Poincaré, 61(1994), 103-133.

    Google Scholar

    [7] F. Bagarello and C. Trapani, CQ-algebras:structure properties, Publ. RIMS Kyoto Univ., 32(1996), 85-116.

    Google Scholar

    [8] F. Bagarello and C. Trapani, Morphisms of certain Banach C-modules, Publ. RIMS Kyoto Univ., 36(2000), 681-705.

    Google Scholar

    [9] J. Baker, Isometries in normed spaces, Amer. Math. Monthly, 78(1971), 655-658.

    Google Scholar

    [10] J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc., 96(1986), 221-226.

    Google Scholar

    [11] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Mechnics I, Springer-Verlag, New York, 1979.

    Google Scholar

    [12] G.O.S. Ekhaguere, Partial W-dynamical systems, in Current Topics in Operator Algebras, Proceedings of the Satellite Conference of ICM-90, pp. 202-217, World Scientific, Singapore, 1991.

    Google Scholar

    [13] G. Epifanio and C. Trapani, Quasi-∗-algebras valued quantized fields, Ann. Inst. H. Poincaré, 46(1987), 175-185.

    Google Scholar

    [14] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 71(2006), 149-161.

    Google Scholar

    [15] K. Fredenhagen and J. Hertel, Local algebras of observables and pointlike localized fields, Commun. Math. Phys., 80(1981), 555-561.

    Google Scholar

    [16] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62(2001), 303-309.

    Google Scholar

    [17] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5(2002), 707-710.

    Google Scholar

    [18] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5(1964), 848-861.

    Google Scholar

    [19] N. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull, 38(1995), 218-222.

    Google Scholar

    [20] C. La Russa and S. Triolo, Radon-Nikodym theorem in quasi ∗-algebras, J. Operator Theory, 69(2013), 423-433.

    Google Scholar

    [21] J. Lee, C. Park and D. Shin, Stability of an additive functional inequality in proper CQ-algebras, Bull. Korean Math. Soc., 48(2011), 853-871.

    Google Scholar

    [22] S. Mazur and S. Ulam, Sur les transformation d'espaces vectoriels normé, C.R. Acad. Sci.Paris, 194(1932), 946-948.

    Google Scholar

    [23] G. Morchio and F. Strocchi, Mathematical structures for long range dynamics and symmetry breaking, J. Math. Phys., 28(1987), 622-635.

    Google Scholar

    [24] R. Pallu de la Barriére, Algèbres unitaires et espaces d'Ambrose, Ann. Ecole Norm. Sup., 70(1953), 381-401.

    Google Scholar

    [25] C. Park, Lie ∗-homomorphisms between Lie C-algebras and Lie ∗-derivations on Lie C-algebras, J. Math. Anal. Appl., 293(2004), 419-434.

    Google Scholar

    [26] C. Park, Homomorphisms between Poisson JC-algebras, Bull. Braz. Math. Soc., 36(2005), 79-97.

    Google Scholar

    [27] C. Park, Homomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC-algebra derivations, J. Lie Theory, 15(2005), 393-414.

    Google Scholar

    [28] C. Park, Isomorphisms between C-ternary algebras, J. Math. Phys. 47, no. 10, 103512(2006).

    Google Scholar

    [29] C. Park and J. An, Isometric isomorphisms in proper CQ-algebras, Acta Math.Sinica, 25(2009), 1131-1138.

    Google Scholar

    [30] C. Park and D. Boo, Isomorphisms and generalized derivations in proper CQ-algebras, J. Nonlinear Sci. Appl., 4(2011), 19-36.

    Google Scholar

    [31] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordanvon Neumann type additive functional equations, J. Inequal. Appl.,(2007), 41820.

    Google Scholar

    [32] C. Park, G. Z. Eskandani, H. Vaezi and D. Shin, Hyers-Ulam stability of derivations on proper Jordan CQ-algebras, J. Inequal. Appl., 2012, Art. No. 2012:114(2012).

    Google Scholar

    [33] C. Park, J. Hou and S. Oh, Homomorphisms between JC∗-algebras and between Lie C-algebras, Acta Math.Sinica, 21(2005), 1391-1398.

    Google Scholar

    [34] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.

    Google Scholar

    [35] Th.M. Rassias, Properties of isometic mappings, J. Math. Anal. Appl., 235(1997), 108-121.

    Google Scholar

    [36] Th.M. Rassias and P. Šemrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping, Proc. Amer. Math. Soc., 118(1993), 919-925.

    Google Scholar

    [37] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66(2003), 191-200.

    Google Scholar

    [38] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge Univ. Press, Cambridge, 1991.

    Google Scholar

    [39] G.L. Sewell, Quantum Mechanics and its Emergent Macrophysics, Princeton University Press, Princeton and Oxford, 2002.

    Google Scholar

    [40] S. Stratila and L. Szido, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, 1979.

    Google Scholar

    [41] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That, Benjamin Inc., New York, 1964.

    Google Scholar

    [42] M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Mathematics 128, Springer-Verlag, New York, 1970.

    Google Scholar

    [43] W. Thirring and A. Wehrl, On the mathematical structure of the B.C.S.-model, Commun. Math. Phys., 4(1967), 303-314.

    Google Scholar

    [44] C. Trapani, Quasi-∗-algebras of operators and their applications, Rev. Math. Phys., 7(1995), 1303-1332.

    Google Scholar

    [45] C. Trapani, Some seminorms on quasi-∗-algebras, Studia Math., 158(2003), 99-115.

    Google Scholar

    [46] C. Trapani, Bounded elements and spectrum in Banach quasi ∗-algebras, Studia Math., 172(2006), 249-273.

    Google Scholar

    [47] S. Triolo, WQ-algebras of measurable operators, Indian J. Pure Appl. Math., 43(2012), 601-617.

    Google Scholar

Article Metrics

Article views(2138) PDF downloads(831) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint