2015 Volume 5 Issue 4
Article Contents

Guanghua Shi. SOME SPECIAL SOLUTIONS FOR DIVERGENCE STRUCTURE QUASILINEAR EQUATION[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 651-661. doi: 10.11948/2015051
Citation: Guanghua Shi. SOME SPECIAL SOLUTIONS FOR DIVERGENCE STRUCTURE QUASILINEAR EQUATION[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 651-661. doi: 10.11948/2015051

SOME SPECIAL SOLUTIONS FOR DIVERGENCE STRUCTURE QUASILINEAR EQUATION

  • We consider the divergence structure quasilinear equation -diva(∇u)=f(x, u, ∇u), which is not a variational equation. By applying the method of Galerkin approximation, we give some special solutions of the above equation.
    MSC: 37J45
  • 加载中
  • [1] S. Aubry and P.Y. LeDaeron, The discrete Frenkel-Kantorova model and its extensions I-Exact results for the ground states, Physica D, 8(1983), 381-422.

    Google Scholar

    [2] V. Bangert, A uniqueness theorem for Zn-periodic variational problems. Comment. Math. Helvetici, 62(1)(1987), 511-531.

    Google Scholar

    [3] V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6(2)(1989), 95-138.

    Google Scholar

    [4] M. Berti, M. Matzeu and E. Valdinoci, On periodic elliptic equations with gradient dependence, Comm. Pure Appl. Anal., 7(3)(2008), 601-615.

    Google Scholar

    [5] U. Bessi, Many solutions of elliptic problems on Rn of irrational slope, Comm. Partial Differential Equations, 30(10-12)(2005), 1773-1804.

    Google Scholar

    [6] L.A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54(12)(2001), 1403-1441.

    Google Scholar

    [7] R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(4)(2009), 1309-1344.

    Google Scholar

    [8] L. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

    Google Scholar

    [9] J.N. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, 21(1982), 457-467.

    Google Scholar

    [10] J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(3)(1986), 229-272.

    Google Scholar

    [11] E. Valdinoci, Plane-like minimizers in periodic media:Jet flows and GinzburgLandau-type functionals, J. Reine Angew. Math., 574(2004), 147-185.

    Google Scholar

Article Metrics

Article views(2099) PDF downloads(785) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint