Guanghua Shi. SOME SPECIAL SOLUTIONS FOR DIVERGENCE STRUCTURE QUASILINEAR EQUATION[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 651-661. doi: 10.11948/2015051
Citation: |
Guanghua Shi. SOME SPECIAL SOLUTIONS FOR DIVERGENCE STRUCTURE QUASILINEAR EQUATION[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 651-661. doi: 10.11948/2015051
|
SOME SPECIAL SOLUTIONS FOR DIVERGENCE STRUCTURE QUASILINEAR EQUATION
-
School of Mathematical Sciences, Fudan University, Handan Street, 200433 Shanghai, People's Republic of China
-
Abstract
We consider the divergence structure quasilinear equation -diva(∇u)=f(x, u, ∇u), which is not a variational equation. By applying the method of Galerkin approximation, we give some special solutions of the above equation.
-
-
References
[1]
|
S. Aubry and P.Y. LeDaeron, The discrete Frenkel-Kantorova model and its extensions I-Exact results for the ground states, Physica D, 8(1983), 381-422.
Google Scholar
|
[2]
|
V. Bangert, A uniqueness theorem for Zn-periodic variational problems. Comment. Math. Helvetici, 62(1)(1987), 511-531.
Google Scholar
|
[3]
|
V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6(2)(1989), 95-138.
Google Scholar
|
[4]
|
M. Berti, M. Matzeu and E. Valdinoci, On periodic elliptic equations with gradient dependence, Comm. Pure Appl. Anal., 7(3)(2008), 601-615.
Google Scholar
|
[5]
|
U. Bessi, Many solutions of elliptic problems on Rn of irrational slope, Comm. Partial Differential Equations, 30(10-12)(2005), 1773-1804.
Google Scholar
|
[6]
|
L.A. Caffarelli and R. de la Llave, Planelike minimizers in periodic media, Comm. Pure Appl. Math., 54(12)(2001), 1403-1441.
Google Scholar
|
[7]
|
R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(4)(2009), 1309-1344.
Google Scholar
|
[8]
|
L. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
Google Scholar
|
[9]
|
J.N. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, 21(1982), 457-467.
Google Scholar
|
[10]
|
J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(3)(1986), 229-272.
Google Scholar
|
[11]
|
E. Valdinoci, Plane-like minimizers in periodic media:Jet flows and GinzburgLandau-type functionals, J. Reine Angew. Math., 574(2004), 147-185.
Google Scholar
|
-
-
-