[1]
|
L. Barreira, J. Chu and C. Valls, Robustness of nonuniform dichotomies with different growth rates, Sao Paulo J. Math. Sci., 5(2011), 1-29.
Google Scholar
|
[2]
|
L. Barreira, J. F. Chu and C. Valls, Lyapunov functions for general nonuniform dichotomies, Milan J. Math., 81(1)(2013), 153-169.
Google Scholar
|
[3]
|
J. F. Chu,Robustness of nonuniform behavior for discrete dynamics,Bull. Sci. Math., 137(2013), 1031-1047.
Google Scholar
|
[4]
|
W.A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, Berlin, 1978.
Google Scholar
|
[5]
|
J.L. Fenner and M. Pinto, On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., 38(1999), 307-325.
Google Scholar
|
[6]
|
M. Han and J.B Li,Lower bounds for the Hilbert number of polynomial systems, J. Diff. Equat., 252(2012), 3278-3304.
Google Scholar
|
[7]
|
L. Jiang, A generalization of Palmer's linearization theorem, Appl. Math., 24(2011), 150-157. (in Chinese)
Google Scholar
|
[8]
|
L. Jiang, Generalized exponential dichotomy and global Linearization, J. Math. Anal. Appl., 315(2006), 474-490.
Google Scholar
|
[9]
|
L. Jiang, Strongly topological linearization with generalized exponential dichotomy, Nonl. Anal.:TMA, 67(2007), 1102-1110.
Google Scholar
|
[10]
|
L.P. Jiang, Ordinary dichotomy and global linearization, Nonl. Anal., 70(2009), 2722-2730.
Google Scholar
|
[11]
|
F. Liang, M. Han, and X.Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Diff. Equat., 255(12)(2013), 4403-4436.
Google Scholar
|
[12]
|
F. X. Lin, Exponential Dichotomies of Linear Systems, Anwei University Press, Hefei, 1999.(in Chinese)
Google Scholar
|
[13]
|
M. Lin, Generalized exponential dichotomy, J. Fuzhou Univ. Nat. Sci. Edition, 10(4)(1982), 21-30. (in Chinese)
Google Scholar
|
[14]
|
M. Lin, The equivalent conditions of the generalized exponential dichotomy, J. Fuzhou Univ. Nat. Sci. Edition, 30(2)(2002), 158-161. (in Chinese)
Google Scholar
|
[15]
|
N. Van Minh, On the proof of characterizations of the exponential dichotomy, Proc. Amer. Math. Soc., 127(1999), 779-782.
Google Scholar
|
[16]
|
Raúl Naulin, A remark on exponential dichotomies, Revista Colom. Math., 33(1999), 9-13.
Google Scholar
|
[17]
|
P. H. A. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations, J. Diff. Equ. Appl., 11(2005), 909-918.
Google Scholar
|
[18]
|
K.J. Palmer, A characterization of exponential dichtomy in terms of topological equivalence, J. Math. Anal. Appl., 69(1979), 8-16.
Google Scholar
|
[19]
|
K.J. Palmer,The structurallly stable linear systems on the half-line are those with exponential dichotomies, J. Diff. Equ., 33(1979), 16-25.
Google Scholar
|
[20]
|
M. Pinto, Dichotomy and existence of periodic solutions of quasilinear functional differential equations, Nonlinear Anal., 72(2010), 1227-1234.
Google Scholar
|
[21]
|
A. Reinfelds, A reduction theorem for systems of differential equations with impulse effect in a Banach space, J. Math. Anal. Appl., 203(1)(1996), 187-210.
Google Scholar
|
[22]
|
R. Sacker and G. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Diff. Equ., 113(1994), 17-67.
Google Scholar
|
[23]
|
J. Shi and J. Zhang,The Principle of Classification for Differential Equations, Science Press, Beijing, 2003. (in Chinese)
Google Scholar
|
[24]
|
Y. H. Xia, J. Cao and M. Han, A new analytical method for the linearization of dynamic equation on measure chains, J. Diff. Equ., 235(2)(2007), 527-543.
Google Scholar
|
[25]
|
Y. H. Xia, X. Chen and V. Romanovski,On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 400(2)(2013), 439-451.
Google Scholar
|
[26]
|
Y. H. Xia, J. Li and P. J.Y. Wong, On the topological classification of dynamic equations on time scales, Nonlinear Anal.:Real World Appl., 14(6)(2013), 2231-2248.
Google Scholar
|
[27]
|
J.M. Yang, On the limit cycles of a kind of Lienard system with a nilpotent center under perturbations, J. Appl. Anal. Comput., 2(3), 325-339.
Google Scholar
|
[28]
|
J.M. Yang, M. Han, and W.Z. Huang,On Hopf bifurcations of piecewise planar Hamiltonian systems,J. Diff. Equat., 250(2011), 1026-1051.
Google Scholar
|
[29]
|
W. Zhang, Generalized exponential dichotomies and invariant manifolds for differential equations, Advances in Math., 22(1)(1993), 1-45.
Google Scholar
|