2015 Volume 5 Issue 4
Article Contents

Liugen Wang, Yonghui Xia, Ninghong Zhao. A CHARACTERIZATION OF GENERALIZED EXPONENTIAL DICHOTOMY[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 662-687. doi: 10.11948/2015052
Citation: Liugen Wang, Yonghui Xia, Ninghong Zhao. A CHARACTERIZATION OF GENERALIZED EXPONENTIAL DICHOTOMY[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 662-687. doi: 10.11948/2015052

A CHARACTERIZATION OF GENERALIZED EXPONENTIAL DICHOTOMY

  • Fund Project:
  • This paper studies some important properties of the notion generalized exponential dichotomy. A new notion called generalized bounded growth is introduced to describe the characterization of generalized exponential dichotomy. The relations between generalized bounded growth and generalized exponential dichotomy are established.
    MSC: 93B18;34D09;34D10;34D20
  • 加载中
  • [1] L. Barreira, J. Chu and C. Valls, Robustness of nonuniform dichotomies with different growth rates, Sao Paulo J. Math. Sci., 5(2011), 1-29.

    Google Scholar

    [2] L. Barreira, J. F. Chu and C. Valls, Lyapunov functions for general nonuniform dichotomies, Milan J. Math., 81(1)(2013), 153-169.

    Google Scholar

    [3] J. F. Chu,Robustness of nonuniform behavior for discrete dynamics,Bull. Sci. Math., 137(2013), 1031-1047.

    Google Scholar

    [4] W.A. Coppel, Dichotomies in Stability Theory, Springer-Verlag, Berlin, 1978.

    Google Scholar

    [5] J.L. Fenner and M. Pinto, On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., 38(1999), 307-325.

    Google Scholar

    [6] M. Han and J.B Li,Lower bounds for the Hilbert number of polynomial systems, J. Diff. Equat., 252(2012), 3278-3304.

    Google Scholar

    [7] L. Jiang, A generalization of Palmer's linearization theorem, Appl. Math., 24(2011), 150-157. (in Chinese)

    Google Scholar

    [8] L. Jiang, Generalized exponential dichotomy and global Linearization, J. Math. Anal. Appl., 315(2006), 474-490.

    Google Scholar

    [9] L. Jiang, Strongly topological linearization with generalized exponential dichotomy, Nonl. Anal.:TMA, 67(2007), 1102-1110.

    Google Scholar

    [10] L.P. Jiang, Ordinary dichotomy and global linearization, Nonl. Anal., 70(2009), 2722-2730.

    Google Scholar

    [11] F. Liang, M. Han, and X.Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Diff. Equat., 255(12)(2013), 4403-4436.

    Google Scholar

    [12] F. X. Lin, Exponential Dichotomies of Linear Systems, Anwei University Press, Hefei, 1999.(in Chinese)

    Google Scholar

    [13] M. Lin, Generalized exponential dichotomy, J. Fuzhou Univ. Nat. Sci. Edition, 10(4)(1982), 21-30. (in Chinese)

    Google Scholar

    [14] M. Lin, The equivalent conditions of the generalized exponential dichotomy, J. Fuzhou Univ. Nat. Sci. Edition, 30(2)(2002), 158-161. (in Chinese)

    Google Scholar

    [15] N. Van Minh, On the proof of characterizations of the exponential dichotomy, Proc. Amer. Math. Soc., 127(1999), 779-782.

    Google Scholar

    [16] Raúl Naulin, A remark on exponential dichotomies, Revista Colom. Math., 33(1999), 9-13.

    Google Scholar

    [17] P. H. A. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations, J. Diff. Equ. Appl., 11(2005), 909-918.

    Google Scholar

    [18] K.J. Palmer, A characterization of exponential dichtomy in terms of topological equivalence, J. Math. Anal. Appl., 69(1979), 8-16.

    Google Scholar

    [19] K.J. Palmer,The structurallly stable linear systems on the half-line are those with exponential dichotomies, J. Diff. Equ., 33(1979), 16-25.

    Google Scholar

    [20] M. Pinto, Dichotomy and existence of periodic solutions of quasilinear functional differential equations, Nonlinear Anal., 72(2010), 1227-1234.

    Google Scholar

    [21] A. Reinfelds, A reduction theorem for systems of differential equations with impulse effect in a Banach space, J. Math. Anal. Appl., 203(1)(1996), 187-210.

    Google Scholar

    [22] R. Sacker and G. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Diff. Equ., 113(1994), 17-67.

    Google Scholar

    [23] J. Shi and J. Zhang,The Principle of Classification for Differential Equations, Science Press, Beijing, 2003. (in Chinese)

    Google Scholar

    [24] Y. H. Xia, J. Cao and M. Han, A new analytical method for the linearization of dynamic equation on measure chains, J. Diff. Equ., 235(2)(2007), 527-543.

    Google Scholar

    [25] Y. H. Xia, X. Chen and V. Romanovski,On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 400(2)(2013), 439-451.

    Google Scholar

    [26] Y. H. Xia, J. Li and P. J.Y. Wong, On the topological classification of dynamic equations on time scales, Nonlinear Anal.:Real World Appl., 14(6)(2013), 2231-2248.

    Google Scholar

    [27] J.M. Yang, On the limit cycles of a kind of Lienard system with a nilpotent center under perturbations, J. Appl. Anal. Comput., 2(3), 325-339.

    Google Scholar

    [28] J.M. Yang, M. Han, and W.Z. Huang,On Hopf bifurcations of piecewise planar Hamiltonian systems,J. Diff. Equat., 250(2011), 1026-1051.

    Google Scholar

    [29] W. Zhang, Generalized exponential dichotomies and invariant manifolds for differential equations, Advances in Math., 22(1)(1993), 1-45.

    Google Scholar

Article Metrics

Article views(2187) PDF downloads(1599) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint