2015 Volume 5 Issue 4
Article Contents

Zhibo Cheng, Jingli Ren. EXISTENCE OF PERIODIC SOLUTION FOR FOURTH-ORDER LIÉNARD TYPE P -LAPLACIAN GENERALIZED NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE PARAMETER[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 704-720. doi: 10.11948/2015054
Citation: Zhibo Cheng, Jingli Ren. EXISTENCE OF PERIODIC SOLUTION FOR FOURTH-ORDER LIÉNARD TYPE P -LAPLACIAN GENERALIZED NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE PARAMETER[J]. Journal of Applied Analysis & Computation, 2015, 5(4): 704-720. doi: 10.11948/2015054

EXISTENCE OF PERIODIC SOLUTION FOR FOURTH-ORDER LIÉNARD TYPE P -LAPLACIAN GENERALIZED NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE PARAMETER

  • Fund Project:
  • In this paper, we consider the following fourth-order Li´ enard type p-Laplacian generalized neutral differential equation with variable parameter (φp(x(t)-c(t)x(t-δ(t)))")" +f(x(t))x'(t)+g(t, x(t), x(t-τ(t)), x'(t))=e(t). By applications of coincidence degree theory and some analysis skills, sufficient conditions for the existence of periodic solutions are established.
    MSC: 34C25;34K13;34K40
  • 加载中
  • [1] Z. Cheng and J. Ren, Periodic solution for high-order differential system, J. Appl. Anal. Comput., 3(2013), 239-249.

    Google Scholar

    [2] W. Cheung and J. Ren, On the existence of periodic solutions for p-Laplacian generalized Liénard equation, Nonlinear Anal. TMA, 60(2005), 65-75.

    Google Scholar

    [3] B. Du, L. Guo, W. Ge and S. Lu, Periodic solutions for generalized Liénard neutral equation with variable parameter, Nonlinear Anal. TMA, 70(2009), 2387-2394.

    Google Scholar

    [4] R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equation, Springer, Berlin, 1977.

    Google Scholar

    [5] W. Liu, Existence and uniqueness of periodic solutions for a kind of Liénard type p-Laplacian equation, Nonlinear Anal. TMA, 69(2008), 724-729.

    Google Scholar

    [6] W. Liu, J. Liu, H. Zhang, Z. Hu and Y. Wu, Existence of periodic solutions for Liénard-type p-Laplacian systems with variable coefficients, Ann. Polon. Math., 109(2013), 109-119.

    Google Scholar

    [7] S. Lu and J. Shan, Existence of periodic solutions for a fourth-order p-Laplacian equation with a deviating argument, J. Comput. Appl. Math., 230(2009), 513-520.

    Google Scholar

    [8] H. Meng and F. Long, Periodic solutions for a Liénard type p-Laplacian differential equation, J. Comput. Appl. Math., 224(2009), 696-701.

    Google Scholar

    [9] J. Meng, Positive periodic solutions for Liénard Type p-Laplacian Equations, Electronic J. Differential Equations, 39(2009), 1-7.

    Google Scholar

    [10] J. Shan and S. Lu, Periodic solutions for a fourth-order p-Laplacian differential equation with a deviating argument, Nonlinear Anal. TMA, 69(2008), 1710-1718.

    Google Scholar

    [11] P. Torres, Z. Cheng and J. Ren, Non-degeneracy and uniqueness of periodic solutions for 2n-order differential equation, Discrete Contin. Dyn. Syst. A, 33(2013), 2155-2168.

    Google Scholar

    [12] Y. Wang, X. Dai and X. Xia, On the existence of a unique periodic solution to a Liénard type p-Laplacian non-autonomous equation, Nonlinear Anal. TMA, 71(2009), 275-280.

    Google Scholar

    [13] K. Wang, and Y. Zhu, Periodic solutions for a fourth-order p-Laplacian neutral functional differential equation, J. Franklin Inst., 347(2010), 1158-1170.

    Google Scholar

    [14] Y. Xin, and Z. Cheng, Neutral operator with variable parameter and third-order neutral differential, Adv. Difference Equations, 2014:173(2014), 1-18.

    Google Scholar

    [15] Y. Xin, X. Han and Z. Cheng, Existence and uniqueness of positive periodic solution for ϕ-Laplacian Liénard equation, Boundary Value Problems, 2014:244(2014), 1-11.

    Google Scholar

    [16] L. Yin and Z. Zhang, Existence of a positive solution for a first-order pLaplacian BVP with impulsive on time scales, J. Appl. Anal. Comput., (2) (2012), 103-109.

    Google Scholar

Article Metrics

Article views(2264) PDF downloads(696) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint