| [1] | A.-L. Barabási, The origin of bursts and heavy tails in human dynamics, Nature, 435(2005)(7039), 207-211. 							Google Scholar
							
						 | 
					
									| [2] | M. Boguñá, D. Krioukov and K. C. Claffy, Navigability of complex networks, Nat. Phys., 5(2008)(1), 74-80. 							Google Scholar
							
						 | 
					
									| [3] | S. Carmi, S. Carter, J. Sun and D. Ben-Avraham, Asymptotic behavior of the kleinberg model, Phys. Rev. Lett., 102(2009)(23), 238702. 							Google Scholar
							
						 | 
					
									| [4] | C. C. Cartozo and P. De Los Rios, Extended navigability of small world networks:exact results and new insights, Phys. Rev. Lett., 102(2009)(23), 238703. 							Google Scholar
							
						 | 
					
									| [5] | Q. Chen, J.-H. Qian and D.-D. Han, Non-Gaussian behavior of the internet topological fluctuations, Int. J. Mod Phys C, 25(2014)(05), 1440012. 							Google Scholar
							
						 | 
					
									| [6] | A. P. de Moura, A. E. Motter and C. Grebogi, Searching in small-world networks, Phys. Rev. E, 68(2003)(3), 036106. 							Google Scholar
							
						 | 
					
									| [7] | M. T. Gastner and M. Newman, Optimal design of spatial distribution networks, Phys. Rev. E, 74(2006)(1), 016117. 							Google Scholar
							
						 | 
					
									| [8] | A. Gautreau, A. Barrat and M. Barthelemy, Microdynamics in stationary complex networks, Proc. Natl. Acad. Sci. U.S.A., 106(2009)(22), 8847-8852. 							Google Scholar
							
						 | 
					
									| [9] | M. C. González, C. A. Hidalgo and A.-L. Barabási, Understanding individual human mobility patterns, Nature, 453(2008)(7196), 779-782. 							Google Scholar
							
						 | 
					
									| [10] | S. A. Hill and D. Braha, Dynamic model of time-dependent complex networks, Phys. Rev. E, 82(2010)(4), 046105. 							Google Scholar
							
						 | 
					
									| [11] | P. Holme, Network reachability of real-world contact sequences, Phys. Rev. E, 71(2005)(4), 046119. 							Google Scholar
							
						 | 
					
									| [12] | P. Holme and J. Saramäki, Temporal networks, Phys. Rep., 519(2012)(3), 97-125. 							Google Scholar
							
						 | 
					
									| [13] | Y. Hu, Y. Wang, D. Li et al., Possible origin of efficient navigation in small worlds, Phys. Rev. Lett., 106(2011)(10), 108701. 							Google Scholar
							
						 | 
					
									| [14] | W. Huang, S. Chen and W. Wang, Navigation in spatial networks:A survey, Physica A, 393(2014), 132-154. 							Google Scholar
							
						 | 
					
									| [15] | H. Kim and R. Anderson, Temporal node centrality in complex networks, Phys. Rev. E, 85(2012)(2), 026107. 							Google Scholar
							
						 | 
					
									| [16] | J. M. Kleinberg, Navigation in a small world, Nature, 406(2000)(6798), 845-845. 							Google Scholar
							
						 | 
					
									| [17] | J. M. Kleinberg, The small-world phenomenon:An algorithmic perspective, in Proceedings of the thirty-second annual ACM symposium on Theory of computing, ACM, New York, 2000, 163-170. 							Google Scholar
							
						 | 
					
									| [18] | K. Kosmidis, S. Havlin and A. Bunde, Structural properties of spatially embedded networks, EPL (Europhysics Letters), 82(2008)(4), 48005. 							Google Scholar
							
						 | 
					
									| [19] | G. Li, S. Reis, A. Moreira et al., Towards design principles for optimal transport networks, Phys. Rev. Lett., 104(2010)(1), 018701. 							Google Scholar
							
						 | 
					
									| [20] | G. Li, S. Reis, A. Moreira et al., Optimal transport exponent in spatially embedded networks, Phys. Rev. E, 87(2013)(4), 042810. 							Google Scholar
							
						 | 
					
									| [21] | Y. Li, D. Zhou, Y. Hu et al., Exact solution for optimal navigation with total cost restriction, EPL (Europhysics Letters), 92(2010)(5), 58002. 							Google Scholar
							
						 | 
					
									| [22] | W. Liu, A. Zeng and Y. Zhou, Degree heterogeneity in spatial networks with total cost constraint, EPL (Europhysics Letters), 98(2012)(2), 28003. 							Google Scholar
							
						 | 
					
									| [23] | C. F. Moukarzel and M. A. de Menezes, Shortest paths on systems with powerlaw distributed long-range connections, Phys. Rev. E, 65(2002)(5), 056709. 							Google Scholar
							
						 | 
					
									| [24] | C. L. Oliveira, P. A. Morais, A. A. Moreira and J. S. Andrade Jr, Enhanced flow in small-world networks, Phys. Rev. Lett., 112(2014)(14), 148701. 							Google Scholar
							
						 | 
					
									| [25] | R. K. Pan and J. Saramäki, Path lengths, correlations, and centrality in temporal networks, Phys. Rev. E, 84(2011)(1), 016105. 							Google Scholar
							
						 | 
					
									| [26] | N. Perra, A. Baronchelli, D. Mocanu et al., Random walks and search in timevarying networks, Phys. Rev. Lett., 109(2012)(23), 238701. 							Google Scholar
							
						 | 
					
									| [27] | N. Perra, B. Gonçalves, R. Pastor-Satorras and A. Vespignani, Activity driven modeling of time varying networks, Sci. Rep., 2(2012)(469). 							Google Scholar
							
						 | 
					
									| [28] | J.-H. Qian, Q. Chen, D.-D. Han et al., Origin of gibrat law in internet:Asymmetric distribution of the correlation, Phys. Rev. E, 89(2014)(6), 062808. 							Google Scholar
							
						 | 
					
									| [29] | A. Riascos and J. L. Mateos, Long-range navigation on complex networks using lévy random walks, Phys. Rev. E, 86(2012)(5), 056110. 							Google Scholar
							
						 | 
					
									| [30] | M. R. Roberson and D. Ben-Avraham, Kleinberg navigation in fractal smallworld networks, Phys. Rev. E, 74(2006)(1), 017101. 							Google Scholar
							
						 | 
					
									| [31] | D. Rybski, S. V. Buldyrev, S. Havlin et al., Scaling laws of human interaction activity, Proc. Natl. Acad. Sci. U.S.A., 106(2009)(31), 12640-12645. 							Google Scholar
							
						 | 
					
									| [32] | M. Starnini, A. Baronchelli and R. Pastor-Satorras, Modeling human dynamics of face-to-face interaction networks, Phys. Rev. Lett., 110(2013)(16), 168701. 							Google Scholar
							
						 | 
					
									| [33] | J. Tang, S. Scellato, M. Musolesi et al., Small-world behavior in time-varying graphs, Phys. Rev. E, 81(2010)(5), 055101. 							Google Scholar
							
						 | 
					
									| [34] | S. Trajanovski, S. Scellato and I. Leontiadis, Error and attack vulnerability of temporal networks, Phys. Rev. E, 85(2012)(6), 066105. 							Google Scholar
							
						 | 
					
									| [35] | D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393(1998)(6684), 440-442. 							Google Scholar
							
						 | 
					
									| [36] | H. Zhu and Z.-X. Huang, Navigation in a small world with local information, Phys. Rev. E, 70(2004)(3), 036117. 							Google Scholar
							
						 |