[1]
|
V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42(1978)(1-2), 43-61.
Google Scholar
|
[2]
|
S. Gao, L. Chen, J.J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24(2006)(35-36), 6037-6045.
Google Scholar
|
[3]
|
P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67(2006/07)(2), 337-353.
Google Scholar
|
[4]
|
H.W. Hethcote, M.A. Lewis and P. van den Driessche, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol., 27(1989)(1), 49-64.
Google Scholar
|
[5]
|
H.W. Hethcote, Z. Ma and S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180(2002)(1-2), 141-160.
Google Scholar
|
[6]
|
H.W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence. J. Math. Biol., 29(1991)(3), 271-287.
Google Scholar
|
[7]
|
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69(2007)(6), 1871-1886.
Google Scholar
|
[8]
|
A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22(2005)(2), 113-128.
Google Scholar
|
[9]
|
J.P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
Google Scholar
|
[10]
|
C. Li, J. Li and Z. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20(2015)(4), 1107-1116.
Google Scholar
|
[11]
|
M.Y. Li and J.S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125(1995)(2), 155-164.
Google Scholar
|
[12]
|
J. Li, Y. Zhou, J. Wu and Z Ma, Complex dynamics of a simple epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 8(2007)(1), 161-173.
Google Scholar
|
[13]
|
W.M. Liu, H.W. Hethcote and S.A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25(1987)(4), 359-380.
Google Scholar
|
[14]
|
W.M. Liu, S.A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23(1986)(2), 187-204.
Google Scholar
|
[15]
|
Z. Ma and J. Li, Dynamical Modeling and Analysis of Epidemics, World Scientific Publishing, Hackensack, NJ, 2009.
Google Scholar
|
[16]
|
S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188(2003)(1), 135-163.
Google Scholar
|
[17]
|
R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60(2010)(8), 2286-2291.
Google Scholar
|
[18]
|
P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation, J. Math. Biol., 40(2000)(6), 525-540.
Google Scholar
|
[19]
|
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, Heidelberg, 1996.
Google Scholar
|
[20]
|
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208(2007)(2), 419-429.
Google Scholar
|
[21]
|
Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonlinear Anal. Real World Appl., 11(2010)(5), 4154-4163.
Google Scholar
|
[22]
|
Y. Yang, J. Wu, J, Li and Z. Ma, Global dynamics-convergence to equilibriaof epidemic patch models with immigration, Math. Comput. Modelling, 51(2010)(5-6), 329-337.
Google Scholar
|
[23]
|
Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Anal. Real World Appl., 11(2010)(2) 995-1004.
Google Scholar
|