[1]
|
A. Aleman and M. J. Martín, Convex harmonic mappings are not necessarily in h1/2, Proc. Amer. Math. Soc., 143(2015), 755-763.
Google Scholar
|
[2]
|
Z. Boyd, M. Dorff, M. Nowak, M. Romney and M. Woloszkiewicz, Univalency of convolutions of harmonic mappings, Appl. Math. Comput., 234(2014), 326-332.
Google Scholar
|
[3]
|
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math., 9(1984), 3-25.
Google Scholar
|
[4]
|
X.-D. Chen and A.-N. Fang, Estimation of hyperbolically partial derivatives of ρ-harmonic quasiconformal mappings and its applications, Complex Var. Elliptic Equ., 60(2015), 875-892.
Google Scholar
|
[5]
|
M. Chuaqui, H. Hamada, R. Hernández and G. Kohr, Pluriharmonic mappings and linearly connected domains in Cn, Israel J. Math., 200(2014), 489-506.
Google Scholar
|
[6]
|
A. Cohn, Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z., 14(1922), 110-148.
Google Scholar
|
[7]
|
E. Deniz and H. Orhan, Lowner chains and univalence criteria related with Ruscheweyh and Salagean derivatives, J. Appl. Anal. Comput., 5(2015), 465-478.
Google Scholar
|
[8]
|
M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Theory Appl., 45(2001), 263-271.
Google Scholar
|
[9]
|
M. Dorff, M. Nowak and M. Woloszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ., 57(2012), 489-503.
Google Scholar
|
[10]
|
P. Duren, Univalent functions, Springer-Verlag, New York, 1983.
Google Scholar
|
[11]
|
P. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
Google Scholar
|
[12]
|
M. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl., 47(2002), 81-92.
Google Scholar
|
[13]
|
X.-Z. Huang, Harmonic quasiconformal mappings on the upper half-plane, Complex Var. Elliptic Equ., 58(2013), 1005-1011.
Google Scholar
|
[14]
|
Y.-P. Jiang, A. Rasila and Y. Sun, A note on convexity of convolutions of harmonic mappings, Bull. Korean Math. Soc., in press, 2015.
Google Scholar
|
[15]
|
D. Kalaj, Quasiconformal harmonic mappings between Dini-smooth Jordan domains, Pacific J. Math., 276(2015), 213-228.
Google Scholar
|
[16]
|
R. Kumar, M. Dorff, S. Gupta and S. Singh, Convolution properties of some harmonic mappings in the right-half plane, arXiv:1304.6167v1, 2013.
Google Scholar
|
[17]
|
R. Kumar, S. Gupta, S. Singh and M. Dorff, An application of Cohn's rule to convolutions of univalent harmonic mappings, arXiv:1306.5375v1, 2013.
Google Scholar
|
[18]
|
R. Kumar, S. Gupta, S. Singh and M. Dorff, On harmonic convolutions involving a vertical strip mapping, Bull. Korean Math. Soc., 52(2015), 105-123.
Google Scholar
|
[19]
|
L.-L. Li and S. Ponnusamy, Solution to an open problem on convolutions of harmonic mappings, Complex Var. Elliptic Equ., 58(2013), 1647-1653.
Google Scholar
|
[20]
|
L.-L. Li and S. Ponnusamy, Convolutions of harmonic mappings convex in one direction, Complex Anal. Oper. Theory, 9(2015), 183-199.
Google Scholar
|
[21]
|
L.-L. Li and S. Ponnusamy, Sections of stable harmonic convex functions, Nonlinear Anal., 123-124(2015), 178-190.
Google Scholar
|
[22]
|
W.-J. Li and Q.-H. Xu, On the properties of a certain subclass of close-toconvex functions, J. Appl. Anal. Comput., 5(2015), 581-588.
Google Scholar
|
[23]
|
Z.-H. Liu and Y.-C. Li, The properties of a new subclass of harmonic univalent mappings, Abstr. Appl. Anal., Article ID 794108, 2013.
Google Scholar
|
[24]
|
S. Muir, Harmonic mappings convex in one or every direction, Comput. Methods Funct. Theory, 12(2012), 221-239.
Google Scholar
|
[25]
|
S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ., 59(2014), 204-216.
Google Scholar
|
[26]
|
S. Nagpal and V. Ravichandran, Convolution properties of the harmonic Koebe function and its connection with 2-starlike mappings, Complex Var. Elliptic Equ., 60(2015), 191-210.
Google Scholar
|
[27]
|
C. Pommenrenke, On starlike and close-to-convex functions, Proc. London Math. Soc., 13(1963), 290-304.
Google Scholar
|
[28]
|
S. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.
Google Scholar
|
[29]
|
D. Partyka and K. Sakan, Quasiconformal and Lipschitz harmonic mappings of the unit disk onto bounded convex domains, Ann. Acad. Sci. Fenn. Math., 39(2014), 811-830.
Google Scholar
|
[30]
|
M. San and H. Irmak, Some novel applications of certain higher order ordinary complex differential equation to normalized analytic functions, J. Appl. Anal. Comput., 5(2015), 479-484.
Google Scholar
|
[31]
|
Z.-G. Wang, Z.-H. Liu and Y.-C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400(2013), 452-459.
Google Scholar
|
[32]
|
Z.-G. Wang, L. Shi and Y.-P. Jiang, Construction of harmonic univalent mappings convex in one direction, Sci. Sin. Math., 44(2014), 139-150.
Google Scholar
|