[1]
|
A. Ben-Tal and M. Teboulle, A geometric property of the least squares solution of linear equations, Linear Algebra Appl., 139(1990), 165-170.
Google Scholar
|
[2]
|
M. Benzi amd M. K. Ng, Preconditioned iterative methods for weighted Toeplitz least squares problems, SIAM J. Matrix Anal. Appl., 27(2006), 1106-1124.
Google Scholar
|
[3]
|
E. Bobrovnikova and S. Vavasis, Accurate solution of weighted least squares by iterative methods, SIAM J. Matrix Anal. Appl., 22(2001), 1153-1174.
Google Scholar
|
[4]
|
A. Forsgren, On linear least-squares problems with diagonally domainant weight matrices, SIAM J. Matrix Anal. Appl., 17(1996), 763-788.
Google Scholar
|
[5]
|
A. Forsgren and G. Sporre, On weighted linear least-squares problems related to interior methods for convex quadratic programming, SIAM J. Matrix Anal. Appl., 23(2001), 42-56.
Google Scholar
|
[6]
|
F. Graybill, Matrices and Applications to Statistics, 2nd Edition, Wadsworth, Belmont, CA, 1983.
Google Scholar
|
[7]
|
N. Karmarker, A new polynomial time algorithm for linear programming, Combinatorica, 4(1984), 373-395.
Google Scholar
|
[8]
|
K. N. Murthy and S. Sivasundaram, Application of weighted Moore-Penrose inverse to two-point boundary value problems, J. Math. Phys. Sci., 26(1992), 493-501.
Google Scholar
|
[9]
|
D. O'Leary, On bounds for scaled projections and pseudoinverses, Linear Algebra Appl., 132(1990), 115-117.
Google Scholar
|
[10]
|
G. W. Stewart, On scaled projections and pseudoinverses, Linear Algebra Appl., 112(1989), 189-193.
Google Scholar
|
[11]
|
M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming algorithm, Oper. Res., 38(1990), 1006-1018.
Google Scholar
|
[12]
|
F. E. Udwadia and R. E. Kalaba, Analytical Dynamics:a New Approach, Cambridge University Press, Cambridge, England, 1996.
Google Scholar
|
[13]
|
G. Wang, Y. Wei and S. Qiao, Generalized Inverses:Theory and Computations, Science Press, Beijing, 2004.
Google Scholar
|
[14]
|
M. Wei, Upper bound and stability of scaled pseudoinverses, Numer. Math., 72(1995), 285-293.
Google Scholar
|
[15]
|
M. Wei, Supremum and Stability of Weighted Pseudoinverses and Weighted Least Sqaures Problems:Analysis and Computations, New York, Nova Science Publishers, 2001.
Google Scholar
|
[16]
|
M. Wei, On stable perturbations of the stiffly weighted pseudoinverse and weighted least squares problem, J. Comput. Math., 23(2005), 527-536.
Google Scholar
|
[17]
|
M. Wei and Q. Liu, A numerically stable block modified Gram-Schmidt algorithm for solving stiff weighted least squares problems, J. Comput. Math., 25(2007), 595-619.
Google Scholar
|
[18]
|
Z. Xu, J. Sun and C. Gu, Perturbation for a pair of oblique projectors AAMN and BBMN, Appl. Math. Comput., 203(2008), 432-446.
Google Scholar
|