2016 Volume 6 Issue 1
Article Contents

Xiaobo Zhang, Qingxiang Xu, Yimin Wei. NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE[J]. Journal of Applied Analysis & Computation, 2016, 6(1): 216-226. doi: 10.11948/2016018
Citation: Xiaobo Zhang, Qingxiang Xu, Yimin Wei. NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE[J]. Journal of Applied Analysis & Computation, 2016, 6(1): 216-226. doi: 10.11948/2016018

NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE

  • Fund Project:
  • For a complex matrix A ∈ Cm×n, the relationship between the weighted Moore-Penrose inverse AM1N1 and A M2N2 is studied, and an important formula is derived, where M1 ∈ Cm×m, N1 ∈ Cn×n and M2 ∈ Cm×m, N2 ∈ Cn×n are different pair of positive definite hermitian matrices. Based on this formula, this paper initiates the study of the perturbation estimations for AMN in the case that A is fixed, whereas both M and N are variable. The obtained norm upper bounds are then applied to the perturbation estimations for the solutions to the weighted linear least squares problems.
    MSC: 15A09;15A60;65F35
  • 加载中
  • [1] A. Ben-Tal and M. Teboulle, A geometric property of the least squares solution of linear equations, Linear Algebra Appl., 139(1990), 165-170.

    Google Scholar

    [2] M. Benzi amd M. K. Ng, Preconditioned iterative methods for weighted Toeplitz least squares problems, SIAM J. Matrix Anal. Appl., 27(2006), 1106-1124.

    Google Scholar

    [3] E. Bobrovnikova and S. Vavasis, Accurate solution of weighted least squares by iterative methods, SIAM J. Matrix Anal. Appl., 22(2001), 1153-1174.

    Google Scholar

    [4] A. Forsgren, On linear least-squares problems with diagonally domainant weight matrices, SIAM J. Matrix Anal. Appl., 17(1996), 763-788.

    Google Scholar

    [5] A. Forsgren and G. Sporre, On weighted linear least-squares problems related to interior methods for convex quadratic programming, SIAM J. Matrix Anal. Appl., 23(2001), 42-56.

    Google Scholar

    [6] F. Graybill, Matrices and Applications to Statistics, 2nd Edition, Wadsworth, Belmont, CA, 1983.

    Google Scholar

    [7] N. Karmarker, A new polynomial time algorithm for linear programming, Combinatorica, 4(1984), 373-395.

    Google Scholar

    [8] K. N. Murthy and S. Sivasundaram, Application of weighted Moore-Penrose inverse to two-point boundary value problems, J. Math. Phys. Sci., 26(1992), 493-501.

    Google Scholar

    [9] D. O'Leary, On bounds for scaled projections and pseudoinverses, Linear Algebra Appl., 132(1990), 115-117.

    Google Scholar

    [10] G. W. Stewart, On scaled projections and pseudoinverses, Linear Algebra Appl., 112(1989), 189-193.

    Google Scholar

    [11] M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar's interior-point linear programming algorithm, Oper. Res., 38(1990), 1006-1018.

    Google Scholar

    [12] F. E. Udwadia and R. E. Kalaba, Analytical Dynamics:a New Approach, Cambridge University Press, Cambridge, England, 1996.

    Google Scholar

    [13] G. Wang, Y. Wei and S. Qiao, Generalized Inverses:Theory and Computations, Science Press, Beijing, 2004.

    Google Scholar

    [14] M. Wei, Upper bound and stability of scaled pseudoinverses, Numer. Math., 72(1995), 285-293.

    Google Scholar

    [15] M. Wei, Supremum and Stability of Weighted Pseudoinverses and Weighted Least Sqaures Problems:Analysis and Computations, New York, Nova Science Publishers, 2001.

    Google Scholar

    [16] M. Wei, On stable perturbations of the stiffly weighted pseudoinverse and weighted least squares problem, J. Comput. Math., 23(2005), 527-536.

    Google Scholar

    [17] M. Wei and Q. Liu, A numerically stable block modified Gram-Schmidt algorithm for solving stiff weighted least squares problems, J. Comput. Math., 25(2007), 595-619.

    Google Scholar

    [18] Z. Xu, J. Sun and C. Gu, Perturbation for a pair of oblique projectors AAMN and BBMN, Appl. Math. Comput., 203(2008), 432-446.

    Google Scholar

Article Metrics

Article views(2165) PDF downloads(951) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint