[1]
|
B.E. Aïnseba, C. Benosman and P. Magal, A model for ovine brucellosis incorporating direct and indirect transmission, J Biol. Dyn., 4(2010)(1), 2-11.
Google Scholar
|
[2]
|
D. Andrew and M. Mary, The population dynamics of brucellosis in the yellowstone national park, Ecology, 77(1996)(4), 1026-1036.
Google Scholar
|
[3]
|
R. Breban, J.M. Drake, D.E. Stallknecht and P. Rohani, The role of environmental transmission in recurrent Avian influenza epidemics, PLoS Comput. Biol., 5(2009)(4), e1000346. DOI:10.1371/journal.pcbi.1000346.
Google Scholar
|
[4]
|
C.J. Briggs and H.C.J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations, Am. Nat., 145(1995), 845-887.
Google Scholar
|
[5]
|
H. Chen and J.T. Sun, Global stability of delay multi-group epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218(2011), 4391-4400.
Google Scholar
|
[6]
|
C.T. Codeço, Endemic and epidemic dynamics of cholera:the role of the aquatic reservoir, BMC Infect. Dis., 1(2001)(1). DOI:10.1186/1471-2334-1-1.
Google Scholar
|
[7]
|
D. Ding and X. Ding, Global stability of multi-group vaccination epidemic models with delays, Nonlinear Anal. RWA., 12(2011), 1991-1997.
Google Scholar
|
[8]
|
Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal. RWA., 13(2012), 2120-2133.
Google Scholar
|
[9]
|
E.D. Ebel, M.S. Williams and S.M. Tomlinson, Estimating herd prevalence of bovine brucellosis in 46 U.S.A. states using slaughter surveillance, Prev. Vet. Med., 85(2008), 295-316.
Google Scholar
|
[10]
|
B. Fang, X.Z. Li, M. Martcheva and L.M. Cai, Global stability for heroin model with two distributed delays, Discrete Cont. Dyn-B, 19(2014)(3), 715-733.
Google Scholar
|
[11]
|
J. González-Guzmán and R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations, J.Math. Biol., 33(1994), 211-234.
Google Scholar
|
[12]
|
Q. Hou, X.D. Sun, J. Zhang, Y.J. Liu, Y.M. Wang and Z. Jin, Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242(2013), 51-58.
Google Scholar
|
[13]
|
Q. Hou, X.D. Sun, Y.M. Wang, B.X. Huang and Z. Jin, Global properties of a general dynamic model for animal diseases:A case study of brucellosis and tuberculosis transmission, J Math. Anal. Appl., 414(2014)(1), 424-433.
Google Scholar
|
[14]
|
G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model for viral infections, SIAM J. Appl. Math., 70(2010), 2693-2708.
Google Scholar
|
[15]
|
R.J. Knell, M. Begon and D.J. Thompson, Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella:a test of the mass action assumption with an insect pathogen, Proc. R. Soc. London B Biol. Sci., 263(1996), 75-81.
Google Scholar
|
[16]
|
X.L. Lai and X.F. Zou, Modeling HIV-1 virus dynamics with both virus-tocell infection and cellto-cell transmission, SIAM J. Appl. Math., 74(2014)(3), 898-917.
Google Scholar
|
[17]
|
H.S. Lee, M. Her, M. Levine and G.E. Moore, Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010, Prev. Vet. Med., 110(2013), 190-197.
Google Scholar
|
[18]
|
M.Y. Li and H.Y. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+T cells with delayed CTL response, Nonlinear Anal. RWA., 13(2012), 1080-1092.
Google Scholar
|
[19]
|
M.Y. Li, Z.S. Shuai and C.C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361(2010), 38-47.
Google Scholar
|
[20]
|
S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. RWA., 12(2011), 119-127.
Google Scholar
|
[21]
|
M.T. Li et al., Transmission dynamics and control for a brucellosis model In Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11(2014), 1115-1137.
Google Scholar
|
[22]
|
M.T. Li, G.Q. Sun, Y.F. Wu, J. Zhang and Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237(2014), 582-594.
Google Scholar
|
[23]
|
G. Pappas, P. Papadimitriou, N. Akritidis, L. Christou and E.V. Tsianos, The new global map of human brucellosis, Lancet Infect. Dis., 6(2006), 91-99.
Google Scholar
|
[24]
|
S. Roy, T.F. McElwain and Y. Wan, A network control theory approach to modeling and optimal control of zoonoses:case study of brucellosis transmission in Sub-Saharan Africa, PLoS Negl. Trop. Dis., 5(2011)(10), e1259. DOI:10.1371/journal.pntd. 0001259.
Google Scholar
|
[25]
|
D. Shabb, N. Chitnis, Z. Baljinnyam, S. Saagii and J. Zinsstag, A mathematical model of the dynamics of Mongolian livestock populations, Livest. Sci., 157(2013), 280-288.
Google Scholar
|
[26]
|
H.Y. Shu, D.J. Fan and J.J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA., 13(2012), 1581-1592.
Google Scholar
|
[27]
|
G.Q. Sun and Z.K. Zhang, Global stability for a sheep brucellosis model with immigration, Appl. Math. Comput., 246(2014), 336-345.
Google Scholar
|
[28]
|
J.J. Treanor, C. Geremia, P.H. Crowley, J.J. Cox, P.J. White, R.L. Wallen and D.W. Blanton, Estimating probabilities of active brucellosis infection in Yellowstone bison through quantitative serology and tissue culture, J. Appl. Ecol., 48(2011)(6), 1324-1332.
Google Scholar
|
[29]
|
R. Xu and Z.E. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA., 10(2009), 3175-3189.
Google Scholar
|
[30]
|
F. Xie and R.D. Horan, Disease and behavioral dynamics for brucellosis control in Elk and Cattle in the greater yellowstone area, J. Agr. Resour. Econ., 34(2009), 11-33.
Google Scholar
|
[31]
|
H. Yoon, O.K. Moon, M. Her, T.E. Carpenter, Y.J. Kim, S. Jung and S.J. Lee, Impact of bovine brucellosis eradication programs in the Republic of Korea, Prev. Vet. Med., 95(2010), 288-291.
Google Scholar
|
[32]
|
J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar and P. Vounatsou, A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69(2005), 77-95.
Google Scholar
|