2016 Volume 6 Issue 1
Article Contents

Qiang Hou, Feng Zhang. GLOBAL DYNAMICS OF A GENERAL BRUCELLOSIS MODEL WITH DISCRETE DELAY[J]. Journal of Applied Analysis & Computation, 2016, 6(1): 227-241. doi: 10.11948/2016019
Citation: Qiang Hou, Feng Zhang. GLOBAL DYNAMICS OF A GENERAL BRUCELLOSIS MODEL WITH DISCRETE DELAY[J]. Journal of Applied Analysis & Computation, 2016, 6(1): 227-241. doi: 10.11948/2016019

GLOBAL DYNAMICS OF A GENERAL BRUCELLOSIS MODEL WITH DISCRETE DELAY

  • Fund Project:
  • For the prevention and control of brucellosis, it is important to investigate the mechanism of brucellosis transmission. Based on the characteristics of the spread of brucellosis, a susceptible-exposed-infectious-brucella (SEIB) delay dynamic model is proposed with the general incidence, elimination rate and shedding rate of pathogen. Under biologically motivated assumptions, it shows the uniqueness of the endemic equilibrium, and investigates the global asymptotically stability of the disease-free equilibrium and the endemic equilibrium. The results suggest that the global stability of equilibria depends entirely on the basic reproduction number R0 and time delay is harmless for the stability of equilibria. Finally, some specific examples and numerical simulations are used to illustrate the utilization of research results and reveal the biological significance of hypothesis (H7), which implies that the dynamics of brucellosis transmission depend largely on the development of the prevention and control strategies.
    MSC: 34D20;37N25
  • 加载中
  • [1] B.E. Aïnseba, C. Benosman and P. Magal, A model for ovine brucellosis incorporating direct and indirect transmission, J Biol. Dyn., 4(2010)(1), 2-11.

    Google Scholar

    [2] D. Andrew and M. Mary, The population dynamics of brucellosis in the yellowstone national park, Ecology, 77(1996)(4), 1026-1036.

    Google Scholar

    [3] R. Breban, J.M. Drake, D.E. Stallknecht and P. Rohani, The role of environmental transmission in recurrent Avian influenza epidemics, PLoS Comput. Biol., 5(2009)(4), e1000346. DOI:10.1371/journal.pcbi.1000346.

    Google Scholar

    [4] C.J. Briggs and H.C.J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations, Am. Nat., 145(1995), 845-887.

    Google Scholar

    [5] H. Chen and J.T. Sun, Global stability of delay multi-group epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218(2011), 4391-4400.

    Google Scholar

    [6] C.T. Codeço, Endemic and epidemic dynamics of cholera:the role of the aquatic reservoir, BMC Infect. Dis., 1(2001)(1). DOI:10.1186/1471-2334-1-1.

    Google Scholar

    [7] D. Ding and X. Ding, Global stability of multi-group vaccination epidemic models with delays, Nonlinear Anal. RWA., 12(2011), 1991-1997.

    Google Scholar

    [8] Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal. RWA., 13(2012), 2120-2133.

    Google Scholar

    [9] E.D. Ebel, M.S. Williams and S.M. Tomlinson, Estimating herd prevalence of bovine brucellosis in 46 U.S.A. states using slaughter surveillance, Prev. Vet. Med., 85(2008), 295-316.

    Google Scholar

    [10] B. Fang, X.Z. Li, M. Martcheva and L.M. Cai, Global stability for heroin model with two distributed delays, Discrete Cont. Dyn-B, 19(2014)(3), 715-733.

    Google Scholar

    [11] J. González-Guzmán and R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations, J.Math. Biol., 33(1994), 211-234.

    Google Scholar

    [12] Q. Hou, X.D. Sun, J. Zhang, Y.J. Liu, Y.M. Wang and Z. Jin, Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242(2013), 51-58.

    Google Scholar

    [13] Q. Hou, X.D. Sun, Y.M. Wang, B.X. Huang and Z. Jin, Global properties of a general dynamic model for animal diseases:A case study of brucellosis and tuberculosis transmission, J Math. Anal. Appl., 414(2014)(1), 424-433.

    Google Scholar

    [14] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model for viral infections, SIAM J. Appl. Math., 70(2010), 2693-2708.

    Google Scholar

    [15] R.J. Knell, M. Begon and D.J. Thompson, Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella:a test of the mass action assumption with an insect pathogen, Proc. R. Soc. London B Biol. Sci., 263(1996), 75-81.

    Google Scholar

    [16] X.L. Lai and X.F. Zou, Modeling HIV-1 virus dynamics with both virus-tocell infection and cellto-cell transmission, SIAM J. Appl. Math., 74(2014)(3), 898-917.

    Google Scholar

    [17] H.S. Lee, M. Her, M. Levine and G.E. Moore, Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010, Prev. Vet. Med., 110(2013), 190-197.

    Google Scholar

    [18] M.Y. Li and H.Y. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+T cells with delayed CTL response, Nonlinear Anal. RWA., 13(2012), 1080-1092.

    Google Scholar

    [19] M.Y. Li, Z.S. Shuai and C.C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361(2010), 38-47.

    Google Scholar

    [20] S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. RWA., 12(2011), 119-127.

    Google Scholar

    [21] M.T. Li et al., Transmission dynamics and control for a brucellosis model In Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11(2014), 1115-1137.

    Google Scholar

    [22] M.T. Li, G.Q. Sun, Y.F. Wu, J. Zhang and Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237(2014), 582-594.

    Google Scholar

    [23] G. Pappas, P. Papadimitriou, N. Akritidis, L. Christou and E.V. Tsianos, The new global map of human brucellosis, Lancet Infect. Dis., 6(2006), 91-99.

    Google Scholar

    [24] S. Roy, T.F. McElwain and Y. Wan, A network control theory approach to modeling and optimal control of zoonoses:case study of brucellosis transmission in Sub-Saharan Africa, PLoS Negl. Trop. Dis., 5(2011)(10), e1259. DOI:10.1371/journal.pntd. 0001259.

    Google Scholar

    [25] D. Shabb, N. Chitnis, Z. Baljinnyam, S. Saagii and J. Zinsstag, A mathematical model of the dynamics of Mongolian livestock populations, Livest. Sci., 157(2013), 280-288.

    Google Scholar

    [26] H.Y. Shu, D.J. Fan and J.J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA., 13(2012), 1581-1592.

    Google Scholar

    [27] G.Q. Sun and Z.K. Zhang, Global stability for a sheep brucellosis model with immigration, Appl. Math. Comput., 246(2014), 336-345.

    Google Scholar

    [28] J.J. Treanor, C. Geremia, P.H. Crowley, J.J. Cox, P.J. White, R.L. Wallen and D.W. Blanton, Estimating probabilities of active brucellosis infection in Yellowstone bison through quantitative serology and tissue culture, J. Appl. Ecol., 48(2011)(6), 1324-1332.

    Google Scholar

    [29] R. Xu and Z.E. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA., 10(2009), 3175-3189.

    Google Scholar

    [30] F. Xie and R.D. Horan, Disease and behavioral dynamics for brucellosis control in Elk and Cattle in the greater yellowstone area, J. Agr. Resour. Econ., 34(2009), 11-33.

    Google Scholar

    [31] H. Yoon, O.K. Moon, M. Her, T.E. Carpenter, Y.J. Kim, S. Jung and S.J. Lee, Impact of bovine brucellosis eradication programs in the Republic of Korea, Prev. Vet. Med., 95(2010), 288-291.

    Google Scholar

    [32] J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar and P. Vounatsou, A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69(2005), 77-95.

    Google Scholar

Article Metrics

Article views(1953) PDF downloads(1118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint