2016 Volume 6 Issue 2
Article Contents

Idrissa Ibrango, Stanislas Ouaro. ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC ANISOTROPIC PROBLEMS WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITION[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 271-292. doi: 10.11948/2016022
Citation: Idrissa Ibrango, Stanislas Ouaro. ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC ANISOTROPIC PROBLEMS WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITION[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 271-292. doi: 10.11948/2016022

ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC ANISOTROPIC PROBLEMS WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITION

  • This study is about a nonlinear anisotropic problem with homogeneous Neumann boundary condition. We first prove, by using the technic of monotone operators in Banach spaces, the existence of weak solution, and by approximation methods, we achieve a result of existence and uniqueness of entropy solution.
    MSC: 35J20;35J25;35D30;35B38;35J60
  • 加载中
  • [1] E. Azroul, M. B. Benboubker and S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator, J. Appl. Anal. Comput., 3(2013)(2), 105-121.

    Google Scholar

    [2] M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reactiondiffusion systems with L1-data modeling the propagation of an epidemic disease, Nonlinear Anal. TMA., 54(2003)(4), 617-636.

    Google Scholar

    [3] M.B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput., 4(2014)(3), 245-270.

    Google Scholar

    [4] B. K. Bonzi and S. Ouaro, Entropy solution for a doubly nonlinear elliptic problem with variable exponent, J. Math. Anal. Appl., 370(2010)(2), 392-405.

    Google Scholar

    [5] B. K. Bonzi, S. Ouaro and F. D. Y. Zongo, Entropy solution for nonlinear elliptic anisotropic homogeneous Neumann Problem, Int. J. Differ. Equ., 2013, Article ID476781.

    Google Scholar

    [6] M. Boureanu and V. D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal., TMA, 75(2012)(12), 4471-4482.

    Google Scholar

    [7] X. Fan, Anisotropic variable exponent Sobolev spaces p(x)-Laplacian equations, Complex Var. Elliptic Equ., 56(2011)(7-9), 623-642.

    Google Scholar

    [8] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W1,p(x)(Ω), J. Math. Anal. Appl., 263(2001)(2), 424-446.

    Google Scholar

    [9] B. Koné, S. Ouaro and S. Traoré, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Diff. Equ, 2009(2009)(144).

    Google Scholar

    [10] O. Kovacik, Z. and J. Rakosnik, On spaces Lp(x) and W1,p(x), Czechoslovak Math. J., 41(1991)(116), 592-618.

    Google Scholar

    [11] M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(2008)(1), 687-698.

    Google Scholar

    [12] S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L1-data, Cubo J., 12(2010)(1), 133-148.

    Google Scholar

    [13] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, 49, American Mathematical Society.

    Google Scholar

    [14] M. Troisi, Theoremi di inclusione per spazi di Sobolev non isotropi, Recherche. Mat., 18(1969), 3-24.

    Google Scholar

Article Metrics

Article views(2310) PDF downloads(881) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint