[1]
|
E. Azroul, M. B. Benboubker and S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator, J. Appl. Anal. Comput., 3(2013)(2), 105-121.
Google Scholar
|
[2]
|
M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reactiondiffusion systems with L1-data modeling the propagation of an epidemic disease, Nonlinear Anal. TMA., 54(2003)(4), 617-636.
Google Scholar
|
[3]
|
M.B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput., 4(2014)(3), 245-270.
Google Scholar
|
[4]
|
B. K. Bonzi and S. Ouaro, Entropy solution for a doubly nonlinear elliptic problem with variable exponent, J. Math. Anal. Appl., 370(2010)(2), 392-405.
Google Scholar
|
[5]
|
B. K. Bonzi, S. Ouaro and F. D. Y. Zongo, Entropy solution for nonlinear elliptic anisotropic homogeneous Neumann Problem, Int. J. Differ. Equ., 2013, Article ID476781.
Google Scholar
|
[6]
|
M. Boureanu and V. D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal., TMA, 75(2012)(12), 4471-4482.
Google Scholar
|
[7]
|
X. Fan, Anisotropic variable exponent Sobolev spaces p(x)-Laplacian equations, Complex Var. Elliptic Equ., 56(2011)(7-9), 623-642.
Google Scholar
|
[8]
|
X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W1,p(x)(Ω), J. Math. Anal. Appl., 263(2001)(2), 424-446.
Google Scholar
|
[9]
|
B. Koné, S. Ouaro and S. Traoré, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Diff. Equ, 2009(2009)(144).
Google Scholar
|
[10]
|
O. Kovacik, Z. and J. Rakosnik, On spaces Lp(x) and W1,p(x), Czechoslovak Math. J., 41(1991)(116), 592-618.
Google Scholar
|
[11]
|
M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(2008)(1), 687-698.
Google Scholar
|
[12]
|
S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L1-data, Cubo J., 12(2010)(1), 133-148.
Google Scholar
|
[13]
|
R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, 49, American Mathematical Society.
Google Scholar
|
[14]
|
M. Troisi, Theoremi di inclusione per spazi di Sobolev non isotropi, Recherche. Mat., 18(1969), 3-24.
Google Scholar
|