2016 Volume 6 Issue 2
Article Contents

Sabir Hussain, Shahid Qaisar. MORE RESULTS ON HERMITE-HADAMARD TYPE INEQUALITY THROUGH (α, m)-PREINVEXITY[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 293-305. doi: 10.11948/2016023
Citation: Sabir Hussain, Shahid Qaisar. MORE RESULTS ON HERMITE-HADAMARD TYPE INEQUALITY THROUGH (α, m)-PREINVEXITY[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 293-305. doi: 10.11948/2016023

MORE RESULTS ON HERMITE-HADAMARD TYPE INEQUALITY THROUGH (α, m)-PREINVEXITY

  • We establish various inequalities for n-times differentiable mappings that are connected with illustrious Hermite-Hadamard integral inequality for mapping whose absolute values of derivatives are (α, m)-preinvex function. The new integral inequalities are then applied to some special means.
    MSC: 26D07;26D10;26D99
  • 加载中
  • [1] M. T. Antczak, Mean value in invexity analysis, Nonlinear Analysis, 60(2005)(8), 1472-1484.

    Google Scholar

    [2] A. Barani, A. G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012, 247(2012).

    Google Scholar

    [3] A. Ben-Israel anf B. Mond, What is invexity, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 28(1986), 1-9.

    Google Scholar

    [4] P. S. Bullen, Hand Book of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.

    Google Scholar

    [5] R. F. Bai, F. Qi and B. Y. Xi, Hermite-Hadamard type inequalities for the m-and (α,m)-logarithmically convex functions, Filomat, 27(2013)(1), 1-7.

    Google Scholar

    [6] S. P. Bai and F. Qi, Some inequalities for (s1,m 1)-(s2,m2)-convex functions on the co-ordinates, Glob. J. Math. Anal., 1(2013)(1), 22-28.

    Google Scholar

    [7] L. Chun and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl., 2013, 451(2013).

    Google Scholar

    [8] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(1998)(5), 91-95.

    Google Scholar

    [9] S. S. Dragomir and C. E. M. Pearce, Selected Topic on Hermite-Hadamard Inequalities and Applications, Melbourne and Adelaide, December, (2000).

    Google Scholar

    [10] S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32(1999)(4), 687-696.

    Google Scholar

    [11] S. Hussain and S. Qaisar, Generalization of Simpson's type inequality through preinvexity and prequasiinvexity, Punjab Univ. J. Math., 46(2014)(2), 1-9.

    Google Scholar

    [12] H. Hudzik and L. Maligrada, Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.

    Google Scholar

    [13] U. S. Kirmaci and M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 153(2004), 361-368.

    Google Scholar

    [14] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(2004)(1), 137-146.

    Google Scholar

    [15] U. S. Kirmaci, K. Klarii and Bakula, M. E. Özdemir and J. Peari, Hadamardtype inequalities for s-convex functions, Appl. Math. Comput., 193(2007)(1), 26-35.

    Google Scholar

    [16] S. R. Mohan and S.K. Neogy, On invex sets and preinvex function, J. Math. Anal. Appl., 189(1995)(3), 901-908.

    Google Scholar

    [17] C. Niculescu and L. E. Persson, Convex Functions and Their Application, Springer, Berlin Heidelberg New York, 2004.

    Google Scholar

    [18] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007)(3), 1-14.

    Google Scholar

    [19] M. A. Noor, Hadamard integral inequalities for product of two preinvex functions, Nonl. Anal. Forum., 14(2009)(3), 167-173.

    Google Scholar

    [20] R. Pini, Invexity and generalized convexity, Optimization, 22(1991), 513-525.

    Google Scholar

    [21] S. Qaisar, C. He and S. Hussain, On new inequalities Of Hermite-Hadamard type for generalized convex functions, Italian journal of pure and applied Mathematics, 33(2014), 139-148.

    Google Scholar

    [22] S. Qaisar and S. Hussain, Some results on Hermite-Hadamard type inequality through convexity, Turkish J. Anal. Num. Theoty, 2(2014)(2), 53-59.

    Google Scholar

    [23] S. Qaisar, C. He and S. Hussain, New integral inequalities through invexity with applications, International Journal of Analysis and Applications, 5(2014)(2), 115-122.

    Google Scholar

    [24] S. Qaisar, C. He and S. Hussain, A generalization of Simpson's type inequality for differentiable functions using alpha-m convex function and applications, Journal of Inequalities and Applications, 158(2013)(1), 13 pages. DOI:10.1186/1029-242X-2013-158.

    Google Scholar

    [25] Y. Shuang, Y. Wang and F. Qi, Some inequalities of Hermite-Hadamard type for functions whose third derivatives are (α, m)-convex, J. Comput. Anal. Appl., 17(2014)(2), 272-279.

    Google Scholar

    [26] Y. Wang, B. Y. Xi and F. Qi, Hermite-Hadamard type integral inequalities when the power of the absolute value of the Ist derivative of the integrand is preinvex, Matematiche, 69(2014)(1) (in press).

    Google Scholar

    [27] T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136(1988a), 29-38.

    Google Scholar

    [28] B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for functions whose derivatives are of convexities, Nonlinear Funct. Anal. Appl., 18(2013)(2), 163-176.

    Google Scholar

    [29] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256(2001), 229-241.

    Google Scholar

Article Metrics

Article views(2548) PDF downloads(1230) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint