[1]
|
M. T. Antczak, Mean value in invexity analysis, Nonlinear Analysis, 60(2005)(8), 1472-1484.
Google Scholar
|
[2]
|
A. Barani, A. G. Ghazanfari and S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012, 247(2012).
Google Scholar
|
[3]
|
A. Ben-Israel anf B. Mond, What is invexity, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 28(1986), 1-9.
Google Scholar
|
[4]
|
P. S. Bullen, Hand Book of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
Google Scholar
|
[5]
|
R. F. Bai, F. Qi and B. Y. Xi, Hermite-Hadamard type inequalities for the m-and (α,m)-logarithmically convex functions, Filomat, 27(2013)(1), 1-7.
Google Scholar
|
[6]
|
S. P. Bai and F. Qi, Some inequalities for (s1,m 1)-(s2,m2)-convex functions on the co-ordinates, Glob. J. Math. Anal., 1(2013)(1), 22-28.
Google Scholar
|
[7]
|
L. Chun and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl., 2013, 451(2013).
Google Scholar
|
[8]
|
S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(1998)(5), 91-95.
Google Scholar
|
[9]
|
S. S. Dragomir and C. E. M. Pearce, Selected Topic on Hermite-Hadamard Inequalities and Applications, Melbourne and Adelaide, December, (2000).
Google Scholar
|
[10]
|
S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32(1999)(4), 687-696.
Google Scholar
|
[11]
|
S. Hussain and S. Qaisar, Generalization of Simpson's type inequality through preinvexity and prequasiinvexity, Punjab Univ. J. Math., 46(2014)(2), 1-9.
Google Scholar
|
[12]
|
H. Hudzik and L. Maligrada, Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.
Google Scholar
|
[13]
|
U. S. Kirmaci and M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 153(2004), 361-368.
Google Scholar
|
[14]
|
U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(2004)(1), 137-146.
Google Scholar
|
[15]
|
U. S. Kirmaci, K. Klarii and Bakula, M. E. Özdemir and J. Peari, Hadamardtype inequalities for s-convex functions, Appl. Math. Comput., 193(2007)(1), 26-35.
Google Scholar
|
[16]
|
S. R. Mohan and S.K. Neogy, On invex sets and preinvex function, J. Math. Anal. Appl., 189(1995)(3), 901-908.
Google Scholar
|
[17]
|
C. Niculescu and L. E. Persson, Convex Functions and Their Application, Springer, Berlin Heidelberg New York, 2004.
Google Scholar
|
[18]
|
M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007)(3), 1-14.
Google Scholar
|
[19]
|
M. A. Noor, Hadamard integral inequalities for product of two preinvex functions, Nonl. Anal. Forum., 14(2009)(3), 167-173.
Google Scholar
|
[20]
|
R. Pini, Invexity and generalized convexity, Optimization, 22(1991), 513-525.
Google Scholar
|
[21]
|
S. Qaisar, C. He and S. Hussain, On new inequalities Of Hermite-Hadamard type for generalized convex functions, Italian journal of pure and applied Mathematics, 33(2014), 139-148.
Google Scholar
|
[22]
|
S. Qaisar and S. Hussain, Some results on Hermite-Hadamard type inequality through convexity, Turkish J. Anal. Num. Theoty, 2(2014)(2), 53-59.
Google Scholar
|
[23]
|
S. Qaisar, C. He and S. Hussain, New integral inequalities through invexity with applications, International Journal of Analysis and Applications, 5(2014)(2), 115-122.
Google Scholar
|
[24]
|
S. Qaisar, C. He and S. Hussain, A generalization of Simpson's type inequality for differentiable functions using alpha-m convex function and applications, Journal of Inequalities and Applications, 158(2013)(1), 13 pages. DOI:10.1186/1029-242X-2013-158.
Google Scholar
|
[25]
|
Y. Shuang, Y. Wang and F. Qi, Some inequalities of Hermite-Hadamard type for functions whose third derivatives are (α, m)-convex, J. Comput. Anal. Appl., 17(2014)(2), 272-279.
Google Scholar
|
[26]
|
Y. Wang, B. Y. Xi and F. Qi, Hermite-Hadamard type integral inequalities when the power of the absolute value of the Ist derivative of the integrand is preinvex, Matematiche, 69(2014)(1) (in press).
Google Scholar
|
[27]
|
T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136(1988a), 29-38.
Google Scholar
|
[28]
|
B. Y. Xi and F. Qi, Hermite-Hadamard type inequalities for functions whose derivatives are of convexities, Nonlinear Funct. Anal. Appl., 18(2013)(2), 163-176.
Google Scholar
|
[29]
|
X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256(2001), 229-241.
Google Scholar
|