2019 Volume 9 Issue 6
Article Contents

E. Takoutsing, S. Bowong, D. Yemele, A. Temgoua. DYNAMICS OF AN INTRA-HOST MODEL OF MALARIA WITH A CONSTANT DRUG EFFICIENCY[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2037-2069. doi: 10.11948/20160266
Citation: E. Takoutsing, S. Bowong, D. Yemele, A. Temgoua. DYNAMICS OF AN INTRA-HOST MODEL OF MALARIA WITH A CONSTANT DRUG EFFICIENCY[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2037-2069. doi: 10.11948/20160266

DYNAMICS OF AN INTRA-HOST MODEL OF MALARIA WITH A CONSTANT DRUG EFFICIENCY

  • In this paper, we investigate the dynamics of an intra-host model of malaria with logistic red blood growth, treatment and immune response. We provide a theoretical study of the model. We derive the basic reproduction number $\mathcal R_f$ which determines the extinction and the persistence of malaria within the body of a host. We compute equilibria and study their stability. More precisely, we show that there exists a threshold parameter $\zeta$ such that if $\mathcal R_f\leq\zeta\leq1$, the disease-free equilibrium is globally asymptotically stable. However, if $\mathcal R_f>1$, there exist two malaria infection equilibria which are locally asymptotically stable: one malaria infection equilibrium without immune response and one malaria infection equilibrium with immune response. The sensitivity analysis of the model has been performed in order to determine the impact of related parameters on outbreak severity. The theory is supported by numerical simulations. We also derive a spatio-temporal model, using Diffusion-Reaction equations to model parasites dispersal. Finally, we provide numerical simulations for parasites spreading, and test different treatment scenarios.
    MSC: 34A34, 34D23, 34D40, 92D30
  • 加载中
  • [1] Z. Agur, D. Abiri, L. H. Van der Ploeg, Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates, Proceedings of the Nat. Acad. of Sci., 1989, 86(23), 9626-9630. doi: 10.1073/pnas.86.23.9626

    CrossRef Google Scholar

    [2] R. M. Anderson, R. M. May, S. Gupta, Non-linear phenomena in host parasite interactions, Parasitology, 1989, 99(S1), S59-S79. doi: 10.1017/S0031182000083426

    CrossRef Google Scholar

    [3] A. Bertoletti, A. J. Gehring, The immune response during hepatitis B virus infection, J. of Gen. Virol., 2006, 1439-1449.

    Google Scholar

    [4] C. Boudin, V. Robert, Plasmodium falciparum: epidemiometrie de la transmission homme-moustique et de l'infection chez le vecteur, Bull Soc Pathol Exot, 2003, 96(4), 335-340.

    Google Scholar

    [5] G. Birkhoff, G. Rota, Ordinary differential equations, Wiley, 1989, 4th ed.

    Google Scholar

    [6] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. biosc. and engineering, 2004, 1(2), 361-404. doi: 10.3934/mbe.2004.1.361

    CrossRef Google Scholar

    [7] F. V. Chisari, M. Isogawa, S. F. Wieland, Pathogenesis of hepatitis B virus infection, Pathologie Biologie, 2010, 58(4), 258-266. doi: 10.1016/j.patbio.2009.11.001

    CrossRef Google Scholar

    [8] C. Chiyaka, W. Garira, S. Dube, Modelling immune response and drug therapy in human malaria infection, Comput. and Math. Methods in Medicine, 2008, 9(2), 143-163. doi: 10.1080/17486700701865661

    CrossRef Google Scholar

    [9] R. J. De Boer, A. S. Perelson, Towards a general function describing T cell proliferation, J of theo. biology, 1995, 175(4), 567-576. doi: 10.1006/jtbi.1995.0165

    CrossRef Google Scholar

    [10] H. Diebner, M. Eichner, L. Molineaux, W. E. Collins, G. M. Jeffery, K. Dietz, Modelling the transition of asexual blood stages of Plasmodium falciparum to gametocytes, J. of Theo. Biology, 2000, 202(2), 113-127. doi: 10.1006/jtbi.1999.1041

    CrossRef Google Scholar

    [11] C. F. Huang, S. S. Lin, Y. C. Ho, F. L. Chen, C. C. Yang, The immune response induced by hepatitis B virus principal antigens, Cell Mol Immunol, 2006, 97-106.

    Google Scholar

    [12] J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, John Wiley & Sons, 2000, Vol. 5.

    Google Scholar

    [13] M. B. Hoshen, R. Heinrich, W. D. Stein, H. Ginsburg, Mathematical modelling of the within-host dynamics of Plasmodium falciparum, Parasitology, 2000, 121(03), 227-235. doi: 10.1017/S0031182099006368

    CrossRef Google Scholar

    [14] B. Kamangira, P. Nyamugure, G. Magombedze, A theoretical mathematical assessment of the effectiveness of coartemether in the treatment of Plasmodium falciparum malaria infection, Math. biosci., 2014, 256, 28-41. doi: 10.1016/j.mbs.2014.07.010

    CrossRef Google Scholar

    [15] J. C. Kamgang, G. Sallet, Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE), Mathematical biosciences, 2008, 213(1), 1-12. doi: 10.1016/j.mbs.2008.02.005

    CrossRef Google Scholar

    [16] L. Malaguarnera, S. Musumeci, The immune response to Plasmodium falciparum malaria, The Lancet infectious diseases, 2002, 2(8), 472-478. doi: 10.1016/S1473-3099(02)00344-4

    CrossRef Google Scholar

    [17] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, . J. of theo. biology, 2008, 254(1), 178-196. doi: 10.1016/j.jtbi.2008.04.011

    CrossRef Google Scholar

    [18] F. E. McKenzie, W. H. Bossert, The Dynamics of Plasmodium falciparumBlood-stage Infection, J. of Theo. Biology, 1997, 188(1), 127-140. doi: 10.1006/jtbi.1997.0478

    CrossRef Google Scholar

    [19] F. E. McKenzie, W. H. Bossert, The Optimal Production of Gametocytes by Plasmodium falciparum, Journal of Theoretical Biology, 1998, 193(3), 419-428. doi: 10.1006/jtbi.1998.0710

    CrossRef Google Scholar

    [20] P. G. McQueen, F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections. Proceedings of the Nat. Acad. of Sci. of USA, 2004, 24, 9161-9166.

    Google Scholar

    [21] L. Molineaux, H. H. Diebner, M. Eichner, W. E Collins, G. M. Jeffery, K. Dietz, Plasmodium falciparum parasitaemia described by a new mathematical model, Parasitology, 2001, 122(04), 379-391. doi: 10.1017/S0031182001007533

    CrossRef Google Scholar

    [22] S. S. Pilyugin, R. Antia, Modeling immune responses with handling time, Bulletin of mathematical biology, 2000, 62(5), 869-890. doi: 10.1006/bulm.2000.0181

    CrossRef Google Scholar

    [23] C. Pramoolsinsup, Management of viral hepatitis B, Journal of gastroenterology and hepatology, 2002, 17, S125-S145. doi: 10.1046/j.1440-1746.17.s1.3.x

    CrossRef Google Scholar

    [24] M. A. Sanchez, S. M. Blower, Uncertainty and sensitivity analysis of the basic reproductive rate: tuberculosis as an example, American Journal of Epidemiology, 1997, 145(12), 1127-1137. doi: 10.1093/oxfordjournals.aje.a009076

    CrossRef Google Scholar

    [25] J. A. Simpson, E. R. Watkins, R. N. Price, L. Aarons, D. E. Kyle, N. J. White, Mefloquine pharmacokinetic-pharmacodynamic models: implications for dosing and resistance, Antimicrobial agents and chemotherapy, 2000, 44(12), 3414-3424. doi: 10.1128/AAC.44.12.3414-3424.2000

    CrossRef Google Scholar

    [26] E. Takoutsing, S. Bowong, D. Yemele, J. Kurths, Effects of Catastrophic Anemia in an Intra-Host Model of Malaria Internat. J. of Bifur. Chaos, 2014, 24, 1450105. doi: 10.1142/S0218127414501053

    CrossRef Google Scholar

    [27] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. biosc., 2002, 180(1), 29-48.

    Google Scholar

    [28] L. Wang, Z. Teng, T. Zhang, Threshold dynamics of a malaria transmission model in periodic environment, Communicat. in Nonl. Sci. and Numerical Simulation, 2013, 18(5), 1288-1303. doi: 10.1016/j.cnsns.2012.09.007

    CrossRef Google Scholar

    [29] N. White, Antimalarial drug resistance and combination chemotherapy, Philosophical Transactions of the Royal Society of London B: Biol. Sci., 1999, 739-749.

    Google Scholar

    [30] World Health Organisation, World Malaria Report, 2015, http://www.who.int/malaria/world-malariareport-2015/en/.

    Google Scholar

Figures(9)  /  Tables(2)

Article Metrics

Article views(2571) PDF downloads(719) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint