Citation: | Fahd Karami, Dris Meskine, Khadija Sadik. A NEW NONLOCAL MODEL FOR THE RESTORATION OF TEXTURED IMAGES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2070-2095. doi: 10.11948/20170189 |
[1] | L. Afraites, A. Atlas, F. Karami and D. Meskine, Some class of parabolic systems applied to image processing, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(6), 1671-1687. doi: 10.3934/dcdsb.2016017 |
[2] | L. Alvarez, P.-L. Lions and J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., 1992, 29(3), 845-866. doi: 10.1137/0729052 |
[3] | F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 2008/09, 40(5), 1815-1851. |
[4] | F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, Nonlocal diffusion problems, 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. |
[5] | A. Atlas, F. Karami and D. Meskine, The Perona-Malik inequality and application to image denoising, Nonlinear Anal. Real World Appl., 2014, 18, 57-68. doi: 10.1016/j.nonrwa.2013.11.006 |
[6] | G. Aubert and P. Kornprobsty, New algorithm for solving variational problems in $w^{1, p}(\omega)$ and $bv(\omega)$: Application to image restoration, Research Report, RR-6245, INRIA, 2007, 25. |
[7] | H. Brezis, New approximations of the total variation and filters in imaging, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2015, 26(2), 223-240. doi: 10.4171/RLM/704 |
[8] | A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 2005, 4(2), 490-530. doi: 10.1137/040616024 |
[9] | S. G. Chang, B. Yu and M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 2000, 9(9), 1532-1546. doi: 10.1109/83.862633 |
[10] | K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 2007, 16(8), 2080-2095. doi: 10.1109/TIP.2007.901238 |
[11] | M. Elad, On the origin of the bilateral filter and ways to improve it, IEEE Trans. Image Process., 2002, 11(10), 1141-1151. doi: 10.1109/TIP.2002.801126 |
[12] | A. Elmoataz, D. Xavier and O. Lezoray, Non-local morphological pdes and p-laplacian equation on graphs with applications in image processing and machine learning, IEEE Journal of Selected Topics in Signal Processing, 2012, (6), 764-779. |
[13] | G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 2007, 6(2), 595-630. doi: 10.1137/060669358 |
[14] | G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 2008, 7(3), 1005-1028. |
[15] | Z. Guo, Q. Liu, J.Sun and B. Wu, Reaction-diffusion systems with p(x)-growth for image denoising, Nonlinear Anal. Real World Appl., 2011, 12(5), 2904-2918. doi: 10.1016/j.nonrwa.2011.04.015 |
[16] | Z. Guo, J. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 2011, 53(5-6), 1336-1350. doi: 10.1016/j.mcm.2010.12.031 |
[17] | Y. Jin, J. Jost and G. Wang, A new nonlocal variational setting for image processing, Inverse Probl. Imaging, 9(2), 415-430. doi: 10.3934/ipi.2015.9.415 |
[18] |
F. Karami, K. Sadik and L. Ziad, A variable exponent nonlocal $p(x)$-Laplacian equation for image restoration, Comput. Math. Appl., 2018, 75(2), 534-546. doi: 10.1016/j.camwa.2017.09.034
CrossRef $p(x)$-Laplacian equation for image restoration" target="_blank">Google Scholar |
[19] | S. Kindermann, S. Osher and P. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 2005, 4(4), 1091-1115. doi: 10.1137/050622249 |
[20] | O. Kleinschmidt, T. Brox and D. Cremers, Nonlocal texture filtering with efficient tree structures and invariant patch similarity measures, Proc. International Workshop on Local and Non- local Approximation in Image Processing. Lausanne, Switzerland: IEEE SP/CAS Chapter in Finland, 2008, 103-113. |
[21] | X. Liu and L. Huang, A new nonlocal total variation regularization algorithm for image denoising, Math. Comput. Simulation, 2014, 97, 224-233. doi: 10.1016/j.matcom.2013.10.001 |
[22] | M. Maggioni, G. Boracchi, A. Foi and K. Egiazarian, Video denoising, deblocking and enhancement through separable 4-d nonlocal spatiotemporal transforms, IEEE Trans. Image Process., 2012, 21(9), 3952-3966. doi: 10.1109/TIP.2012.2199324 |
[23] | M. Maggioni and A. Foi, Nonlocal transform-domain denoising of volumetric data with groupwise adaptive variance estimation, Proc. SPIE Electronic Imaging 2012, Computational Imaging X, 2012, 8296-22. |
[24] | M. Maggioni, V. Katkovnik, K. Egiazarian and A. Foi, A nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process., 2013, 22(2), 119-133. |
[25] | Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, 22 of University Lecture Series, American Mathematical Society, Providence, RI, 2001. The fifteenth Dean Jacqueline B. Lewis memorial lectures. |
[26] | S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Model. Simul., 2003, 1(3), 349-370. doi: 10.1137/S1540345902416247 |
[27] | P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12, 629-639. doi: 10.1109/34.56205 |
[28] | L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 1992, 60(1-4), 259-268. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). |
[29] | O. Seungmi, W. Hyenkyun, Y. Sangwoon and K. Myungjoo, Non-convex hybrid total variation for image denoising, J. Vis. Commun. Image R., 2013, 24, 332-344. doi: 10.1016/j.jvcir.2013.01.010 |
[30] | J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 1987, 146, 65-96. |
[31] | L. P. Yaroslavsky, Digital picture processing, 9 of Springer Series in Information Sciences, Springer-Verlag, Berlin, 1985. An introduction. |