2019 Volume 9 Issue 6
Article Contents

Fahd Karami, Dris Meskine, Khadija Sadik. A NEW NONLOCAL MODEL FOR THE RESTORATION OF TEXTURED IMAGES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2070-2095. doi: 10.11948/20170189
Citation: Fahd Karami, Dris Meskine, Khadija Sadik. A NEW NONLOCAL MODEL FOR THE RESTORATION OF TEXTURED IMAGES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2070-2095. doi: 10.11948/20170189

A NEW NONLOCAL MODEL FOR THE RESTORATION OF TEXTURED IMAGES

  • In this paper, we focus on the mathematical and numerical study of a new nonlocal reaction-diffusion system for image denoising. This model is motivated by involving the decomposition approach of $H^{-1}$ norm suggested by Meyer [25] which is more appropriate to represent the oscillatory patterns and small details in the textured image. Based on Schaeffer's fixed point theorem, we prove the existence and uniqueness of solution of the proposed model. To illustrate the efficiency and effectiveness of our model, we test the denoising experimental results as well we compare with some existing models in the literature.
    MSC: 68U10, 45G10, 47H10
  • 加载中
  • [1] L. Afraites, A. Atlas, F. Karami and D. Meskine, Some class of parabolic systems applied to image processing, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(6), 1671-1687. doi: 10.3934/dcdsb.2016017

    CrossRef Google Scholar

    [2] L. Alvarez, P.-L. Lions and J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., 1992, 29(3), 845-866. doi: 10.1137/0729052

    CrossRef Google Scholar

    [3] F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 2008/09, 40(5), 1815-1851.

    Google Scholar

    [4] F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, Nonlocal diffusion problems, 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

    Google Scholar

    [5] A. Atlas, F. Karami and D. Meskine, The Perona-Malik inequality and application to image denoising, Nonlinear Anal. Real World Appl., 2014, 18, 57-68. doi: 10.1016/j.nonrwa.2013.11.006

    CrossRef Google Scholar

    [6] G. Aubert and P. Kornprobsty, New algorithm for solving variational problems in $w^{1, p}(\omega)$ and $bv(\omega)$: Application to image restoration, Research Report, RR-6245, INRIA, 2007, 25.

    Google Scholar

    [7] H. Brezis, New approximations of the total variation and filters in imaging, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2015, 26(2), 223-240. doi: 10.4171/RLM/704

    CrossRef Google Scholar

    [8] A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 2005, 4(2), 490-530. doi: 10.1137/040616024

    CrossRef Google Scholar

    [9] S. G. Chang, B. Yu and M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 2000, 9(9), 1532-1546. doi: 10.1109/83.862633

    CrossRef Google Scholar

    [10] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 2007, 16(8), 2080-2095. doi: 10.1109/TIP.2007.901238

    CrossRef Google Scholar

    [11] M. Elad, On the origin of the bilateral filter and ways to improve it, IEEE Trans. Image Process., 2002, 11(10), 1141-1151. doi: 10.1109/TIP.2002.801126

    CrossRef Google Scholar

    [12] A. Elmoataz, D. Xavier and O. Lezoray, Non-local morphological pdes and p-laplacian equation on graphs with applications in image processing and machine learning, IEEE Journal of Selected Topics in Signal Processing, 2012, (6), 764-779.

    Google Scholar

    [13] G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 2007, 6(2), 595-630. doi: 10.1137/060669358

    CrossRef Google Scholar

    [14] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 2008, 7(3), 1005-1028.

    Google Scholar

    [15] Z. Guo, Q. Liu, J.Sun and B. Wu, Reaction-diffusion systems with p(x)-growth for image denoising, Nonlinear Anal. Real World Appl., 2011, 12(5), 2904-2918. doi: 10.1016/j.nonrwa.2011.04.015

    CrossRef Google Scholar

    [16] Z. Guo, J. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 2011, 53(5-6), 1336-1350. doi: 10.1016/j.mcm.2010.12.031

    CrossRef Google Scholar

    [17] Y. Jin, J. Jost and G. Wang, A new nonlocal variational setting for image processing, Inverse Probl. Imaging, 9(2), 415-430. doi: 10.3934/ipi.2015.9.415

    CrossRef Google Scholar

    [18] F. Karami, K. Sadik and L. Ziad, A variable exponent nonlocal $p(x)$-Laplacian equation for image restoration, Comput. Math. Appl., 2018, 75(2), 534-546. doi: 10.1016/j.camwa.2017.09.034

    CrossRef $p(x)$-Laplacian equation for image restoration" target="_blank">Google Scholar

    [19] S. Kindermann, S. Osher and P. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 2005, 4(4), 1091-1115. doi: 10.1137/050622249

    CrossRef Google Scholar

    [20] O. Kleinschmidt, T. Brox and D. Cremers, Nonlocal texture filtering with efficient tree structures and invariant patch similarity measures, Proc. International Workshop on Local and Non- local Approximation in Image Processing. Lausanne, Switzerland: IEEE SP/CAS Chapter in Finland, 2008, 103-113.

    Google Scholar

    [21] X. Liu and L. Huang, A new nonlocal total variation regularization algorithm for image denoising, Math. Comput. Simulation, 2014, 97, 224-233. doi: 10.1016/j.matcom.2013.10.001

    CrossRef Google Scholar

    [22] M. Maggioni, G. Boracchi, A. Foi and K. Egiazarian, Video denoising, deblocking and enhancement through separable 4-d nonlocal spatiotemporal transforms, IEEE Trans. Image Process., 2012, 21(9), 3952-3966. doi: 10.1109/TIP.2012.2199324

    CrossRef Google Scholar

    [23] M. Maggioni and A. Foi, Nonlocal transform-domain denoising of volumetric data with groupwise adaptive variance estimation, Proc. SPIE Electronic Imaging 2012, Computational Imaging X, 2012, 8296-22.

    Google Scholar

    [24] M. Maggioni, V. Katkovnik, K. Egiazarian and A. Foi, A nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process., 2013, 22(2), 119-133.

    Google Scholar

    [25] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, 22 of University Lecture Series, American Mathematical Society, Providence, RI, 2001. The fifteenth Dean Jacqueline B. Lewis memorial lectures.

    Google Scholar

    [26] S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Model. Simul., 2003, 1(3), 349-370. doi: 10.1137/S1540345902416247

    CrossRef $H^{-1}$ norm" target="_blank">Google Scholar

    [27] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12, 629-639. doi: 10.1109/34.56205

    CrossRef Google Scholar

    [28] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 1992, 60(1-4), 259-268. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991).

    Google Scholar

    [29] O. Seungmi, W. Hyenkyun, Y. Sangwoon and K. Myungjoo, Non-convex hybrid total variation for image denoising, J. Vis. Commun. Image R., 2013, 24, 332-344. doi: 10.1016/j.jvcir.2013.01.010

    CrossRef Google Scholar

    [30] J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 1987, 146, 65-96.

    $L^p(0,T;B)$" target="_blank">Google Scholar

    [31] L. P. Yaroslavsky, Digital picture processing, 9 of Springer Series in Information Sciences, Springer-Verlag, Berlin, 1985. An introduction.

    Google Scholar

Figures(11)  /  Tables(4)

Article Metrics

Article views(3155) PDF downloads(834) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint