[1]
|
D.R. Anderson and A. Cabada, Third order right-focal multipoint problems on time scales, J. Difference Equations Appl., 12(2006)(9), 919-935.
Google Scholar
|
[2]
|
D.R. Anderson and J. Hoffacker, Existence of solutions to a third-order multipoint problem on time scales, Electronic J. Differential Equations, 107(2007), 1-15.
Google Scholar
|
[3]
|
F.M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling, 43(2006), 718-726.
Google Scholar
|
[4]
|
M. Benchohra and J.J. Nieto, Abdelghani Ouahab1Second-Order Boundary Value Problem with Integral Boundary Conditions, (2011), Article ID 260309, 9 pages.
Google Scholar
|
[5]
|
A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Analysis, 70(2009), 364-371.
Google Scholar
|
[6]
|
M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston, Cambridge, MA, 2001.
Google Scholar
|
[7]
|
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Cambridge, MA, 2003.
Google Scholar
|
[8]
|
A. Boucherif and J. Henderson, Positive solutions of second order boundary value problems with sign changing Caratheodory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 2006.
Google Scholar
|
[9]
|
N.P. Cac, A.M. Fink and J.A. Gatica, Nonnegative solutions of quasilinear elliptic boundary value problems with nonnegative coefficients, J. Math. Anal. Appl., 206(1997)(19).
Google Scholar
|
[10]
|
D.G. de Figueiredo, P.L. Lions and R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 4163(1982)(61).
Google Scholar
|
[11]
|
J.M. Gallardo, Second order differential operators with integral boundary conditions and generation of semigroups, Rocky Mt. J. Math., 30(2000), 1265-1292.
Google Scholar
|
[12]
|
D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
Google Scholar
|
[13]
|
C.P. Gupta, A note on a second order three-point boundary value problem, J. Math. Anal. Appl., 186(1994), 277-281.
Google Scholar
|
[14]
|
S. Hilger, Ein Masskettenkalkl mit Anwendug auf zentrumsmanningfaltigkeiten Phd Thesis, Universitat Wurzburg, 1988.
Google Scholar
|
[15]
|
M.A. Jones, B. Song and D.M. Thomas, Controlling wound healing through debridement, Math. Comput. Modelling, 40(2004), 1057-1064.
Google Scholar
|
[16]
|
G.L. Karakostas and P.C. Tsamatos, Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differ. Equ., 30(2002), 1-17.
Google Scholar
|
[17]
|
H.B. Keller, Some positone problem suggested by nonlinear heat generation, in:J.B. Keller, S. Antman (Eds.), Bifurcation Theory and Nonlinear Eigenvalue Problems, W. A. Benjamin, (1969), 217255.
Google Scholar
|
[18]
|
S.H. Liang and J.H. Zhang, Existence of three positive solutions of three-order with m-point impulsive boundary value problems, Acta Appl. Math., 110(2010), 1265-1292.
Google Scholar
|
[19]
|
Y. Li and T. Zhang, Multiple positive solutions for second-order p-Laplacian dynamic equations with integral boundary conditions, Bound. Value Probl., (2011), Article ID 867615.
Google Scholar
|
[20]
|
A. Lomtatidze and L. Malaguti, On a nonlocal boundary-value problems for second order nonlinear singular differential equations, Georgian Math. J., 7(2000), 133-154.
Google Scholar
|
[21]
|
Y.H. Su, W.T. Li and H.R. Sun, Triple positive pseudo-symmetric solutions of three-point BVPs for p-Laplacian dynamic equations on time scales, Nonlinear Analysis, 68(2008), 1442-1452.
Google Scholar
|
[22]
|
D.M. Thomas, L. Vandemuelebroeke and K. Yamaguchi, A mathematical evolution model for phy-toremediation of metals, Discrete Contin. Dyn. Syst. Ser. B, 5(2005), 411-422.
Google Scholar
|
[23]
|
X.M. Zhang, M.Q. Feng and W.G. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integrodifferential equations in Banach spaces, J. Comput. Appl. Math., 233(2010), 1915-1926.
Google Scholar
|
[24]
|
J.F. Zhao, P.G. Wang and W.G. Ge, Existence and nonexistence of positive solutions for a class of third order BVP with integral boundary conditions in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16(2011), 402-413.
Google Scholar
|