2016 Volume 6 Issue 2
Article Contents

Arzu Denk Oguz, Fatma Serap Topal. SYMMETRIC POSITIVE SOLUTIONS FOR SECOND ORDER BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 531-542. doi: 10.11948/2016038
Citation: Arzu Denk Oguz, Fatma Serap Topal. SYMMETRIC POSITIVE SOLUTIONS FOR SECOND ORDER BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 531-542. doi: 10.11948/2016038

SYMMETRIC POSITIVE SOLUTIONS FOR SECOND ORDER BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS ON TIME SCALES

  • This paper investigates the existence of symmetric positive solutions for a class of nonlinear boundary value problem of second order dynamic equations with integral boundary conditions on time scales. Under suitable conditions, the existence of symmetric positive solution is established by using monotone iterative technique.
    MSC: 34B15;39A10
  • 加载中
  • [1] D.R. Anderson and A. Cabada, Third order right-focal multipoint problems on time scales, J. Difference Equations Appl., 12(2006)(9), 919-935.

    Google Scholar

    [2] D.R. Anderson and J. Hoffacker, Existence of solutions to a third-order multipoint problem on time scales, Electronic J. Differential Equations, 107(2007), 1-15.

    Google Scholar

    [3] F.M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling, 43(2006), 718-726.

    Google Scholar

    [4] M. Benchohra and J.J. Nieto, Abdelghani Ouahab1Second-Order Boundary Value Problem with Integral Boundary Conditions, (2011), Article ID 260309, 9 pages.

    Google Scholar

    [5] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Analysis, 70(2009), 364-371.

    Google Scholar

    [6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston, Cambridge, MA, 2001.

    Google Scholar

    [7] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Cambridge, MA, 2003.

    Google Scholar

    [8] A. Boucherif and J. Henderson, Positive solutions of second order boundary value problems with sign changing Caratheodory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 2006.

    Google Scholar

    [9] N.P. Cac, A.M. Fink and J.A. Gatica, Nonnegative solutions of quasilinear elliptic boundary value problems with nonnegative coefficients, J. Math. Anal. Appl., 206(1997)(19).

    Google Scholar

    [10] D.G. de Figueiredo, P.L. Lions and R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 4163(1982)(61).

    Google Scholar

    [11] J.M. Gallardo, Second order differential operators with integral boundary conditions and generation of semigroups, Rocky Mt. J. Math., 30(2000), 1265-1292.

    Google Scholar

    [12] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.

    Google Scholar

    [13] C.P. Gupta, A note on a second order three-point boundary value problem, J. Math. Anal. Appl., 186(1994), 277-281.

    Google Scholar

    [14] S. Hilger, Ein Masskettenkalkl mit Anwendug auf zentrumsmanningfaltigkeiten Phd Thesis, Universitat Wurzburg, 1988.

    Google Scholar

    [15] M.A. Jones, B. Song and D.M. Thomas, Controlling wound healing through debridement, Math. Comput. Modelling, 40(2004), 1057-1064.

    Google Scholar

    [16] G.L. Karakostas and P.C. Tsamatos, Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differ. Equ., 30(2002), 1-17.

    Google Scholar

    [17] H.B. Keller, Some positone problem suggested by nonlinear heat generation, in:J.B. Keller, S. Antman (Eds.), Bifurcation Theory and Nonlinear Eigenvalue Problems, W. A. Benjamin, (1969), 217255.

    Google Scholar

    [18] S.H. Liang and J.H. Zhang, Existence of three positive solutions of three-order with m-point impulsive boundary value problems, Acta Appl. Math., 110(2010), 1265-1292.

    Google Scholar

    [19] Y. Li and T. Zhang, Multiple positive solutions for second-order p-Laplacian dynamic equations with integral boundary conditions, Bound. Value Probl., (2011), Article ID 867615.

    Google Scholar

    [20] A. Lomtatidze and L. Malaguti, On a nonlocal boundary-value problems for second order nonlinear singular differential equations, Georgian Math. J., 7(2000), 133-154.

    Google Scholar

    [21] Y.H. Su, W.T. Li and H.R. Sun, Triple positive pseudo-symmetric solutions of three-point BVPs for p-Laplacian dynamic equations on time scales, Nonlinear Analysis, 68(2008), 1442-1452.

    Google Scholar

    [22] D.M. Thomas, L. Vandemuelebroeke and K. Yamaguchi, A mathematical evolution model for phy-toremediation of metals, Discrete Contin. Dyn. Syst. Ser. B, 5(2005), 411-422.

    Google Scholar

    [23] X.M. Zhang, M.Q. Feng and W.G. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integrodifferential equations in Banach spaces, J. Comput. Appl. Math., 233(2010), 1915-1926.

    Google Scholar

    [24] J.F. Zhao, P.G. Wang and W.G. Ge, Existence and nonexistence of positive solutions for a class of third order BVP with integral boundary conditions in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16(2011), 402-413.

    Google Scholar

Article Metrics

Article views(3224) PDF downloads(1038) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint