[1]
|
E. N. Chukwu, Differential Models and Neutral Systems for Controlling Wealth of Nations, World Scientific, Singapore, 2003.
Google Scholar
|
[2]
|
S. Evje and K. H. Karlsen, Monotone difference approximations of bv solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37(2000), 1838-1860.
Google Scholar
|
[3]
|
D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New York, 1969.
Google Scholar
|
[4]
|
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Eaglewood Cliffs, NJ, 1964.
Google Scholar
|
[5]
|
C. A. Hall and T. A. Porching, Numerical Analysis of Partial Differential Equations, Prentice Hall, Eaglewood Cliffs, NJ, 1990.
Google Scholar
|
[6]
|
K. I. Kim and Z. G. Lin, Blowup estimates for a parabolic system in a threespecies cooperating model, J. Math. Anal. Appl., 293(2004), 663-676.
Google Scholar
|
[7]
|
P. Korman and A. Leung, On the existence and uniqueness of positive states in the volterra-lotka ecological models with diffusion, Appl. Anal., 26(1987), 145-160.
Google Scholar
|
[8]
|
A. W. Leung and G. W. Fan, Existence of positive solutions for elliptic systems-degenerate and nonhomogeneous ecological models, J. Math. Anal. Appl., 151(1990), 512-531.
Google Scholar
|
[9]
|
T. Lines, H. G. Roos and R. Vulanovic, Uniform pointwise convergence on shishkin-type meshes for quasi-linear convection-diffusion problems, SIAM J. Numer. Anal., 38(2000), 897-912.
Google Scholar
|
[10]
|
S. Meddahi, On a mixed finite element formulation of a second order quasilinear problem in the plane, Numer. Methods Partial Diff. Eqs., 20(2004), 90-103.
Google Scholar
|
[11]
|
F. A. Milner, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Compu., 44(1985), 303-320.
Google Scholar
|
[12]
|
J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.
Google Scholar
|
[13]
|
A. Okubo, Diffusion and Ecological Problems:Mathematical Models, Biomathematics, Vol.10, Springer-Verlag, Berlin, 1980.
Google Scholar
|
[14]
|
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
Google Scholar
|
[15]
|
M. N. Ozisik, Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton, 1994.
Google Scholar
|
[16]
|
C. V. Pao, Numerical solutions for some coupled systems of nonlinear boundary value problems, Numer. Math., 51(1987), 381-394.
Google Scholar
|
[17]
|
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
Google Scholar
|
[18]
|
C. V. Pao, Finite difference reaction diffusion equations with nonlinear boundary conditions, Numer. Meth. Part. Diff. Eqs., 11(1995), 355-374.
Google Scholar
|
[19]
|
C. V. Pao, Numerical analysis of coupled system of nonlinear parabolic equations, SIAM J. Numer. Anal., 36(1999), 393-416.
Google Scholar
|
[20]
|
C. V. Pao, Quasilinear parabolic and elliptic equations with nonlinear boundary conditions, Nonlinear Analysis, 66(2006), 639-662.
Google Scholar
|
[21]
|
C. V. Pao, Numerical methods for quasilinear elliptic equations with nonlinear boundary conditions, SIAM J. Numer, Anal., 45(2007), 1081-1106.
Google Scholar
|
[22]
|
C. V. Pao and W. H. Ruan, Quasilinear parabolic and elliptic systems with mixed quasimonotone functions, J. Differential Equations, 255(2013), 1515-1553.
Google Scholar
|
[23]
|
N. Schigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79(1980), 83-99.
Google Scholar
|
[24]
|
G. D. Smith, Numerical Solution of Partial Differential Equations:Finite Difference Methods, Clarendon, Oxford, 1986.
Google Scholar
|
[25]
|
R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Eaglewood Cliffs, NJ, 1962.
Google Scholar
|
[26]
|
J. H. Wang and C. V. Pao, Finite difference reaction-diffusion equations with nonlinear diffusion coefficients, Numer. Math., 85(2000), 485-502.
Google Scholar
|
[27]
|
L. Z. Wang and K. T. Li, On positive solutions of the lotka-volterra coorporating models with diffusion, Nonlinear Analysis, 53(2003), 1115-1125.
Google Scholar
|
[28]
|
J. Wu and G. Wei, Coexistence states for coorporative model with diffusion, Computers Math. Appl., 43(2002), 1277-1290.
Google Scholar
|
[29]
|
D. M. Young, Iterative Solution of Large Linear System, Academic Press, New York, 1971.
Google Scholar
|