[1]
|
A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, SIAM, Philadelphia, PA, 2005.
Google Scholar
|
[2]
|
L. Bao, Y. Lin, and Y. Wei, Krylov subspace methods for the generalized Sylvester equation, Appl. Math. Comput., 175(2006), 557-573.
Google Scholar
|
[3]
|
R.H. Bartels, and G.W. Stewart, Algorithm 432:Solution of the matrix equation AX + XB=C, Circ. Syst. Signal Proc., 13(1994), 820-826.
Google Scholar
|
[4]
|
U. Baur, and P. Benner, Cross-gramian based model reduction for data-sparse systems, Electr. Trans. Num. Anal., 31(2008), 256-270.
Google Scholar
|
[5]
|
R. Bhatia, and P. Rosenthal, How and why to solve the operator equation AX -XB=Y, Bull. Lond. Math. Soc., 29(1997), 1-21.
Google Scholar
|
[6]
|
G. Birkhoff, R.S. Varga, and D. Young, Alternating direction implicit methods, Advances in Computing, Academic, New York, 3(1962), 189-273.
Google Scholar
|
[7]
|
A. Bouhamidi, M. Hached, K. Jbilou, A preconditioned block Arnoldi method for large scale Lyapunov and algebraic Riccati equations, J. Global. Optim., (2015), 1-14.
Google Scholar
|
[8]
|
D. Calvetti, N. Levenberg, and L. Reichel, Iterative methods for X-AXB=C, J. Comput. Appl. Math., 86(1997), 73-101.
Google Scholar
|
[9]
|
D. Calvetti, and L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17(1996), 165-186.
Google Scholar
|
[10]
|
C.H. Choi and A.J. Laub, Efficient matrix-valued algorithm for solving stiff Riccati differential equations, IEEE Trans. Automat. Control, 35(1990), 770-776.
Google Scholar
|
[11]
|
B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic Press, 2004.
Google Scholar
|
[12]
|
B.N. Datta, and K. Datta, Theoretical and computational aspects of some linear algebra problems in control theory, in:C.I. Byrnes, A. Lindquist (Eds.), Computational and Combinatorial Methods in Systems Theory, Elsevier, Amsterdam, 201-212, 1986.
Google Scholar
|
[13]
|
L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM J. Numer. Anal., 29(1992), 781-815.
Google Scholar
|
[14]
|
A. El Guennouni, K. Jbilou, and J. Riquet, Block Krylov subspace methods for solving large Sylvester equations, Numer. Algorithms, 29(2002), 75-96.
Google Scholar
|
[15]
|
N.S. Ellner, and E.L. Wachspress, Alternating direction implicit iteration for systems with complex spectra, SIAM J. Numer. Anal., 28(1991), 859-870.
Google Scholar
|
[16]
|
W. Enright, Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations, ACM Trans. Math. Softw., 4(1978), 127-136.
Google Scholar
|
[17]
|
Y.-H. Gao, and Z.-Z. Bai, On inexact Newton methods based on doubling iteration scheme for non-symmetric algebraic Riccati equations, Numer. Linear Algebra Appl., 18(2010), 325-341.
Google Scholar
|
[18]
|
G.H. Golub, S. Nash, and C. Van Loan, A Hessenberg-Schur method for the problem AX +XB=C, IEEE Trans. Automat. Contr., AC-24(1979), 909-913.
Google Scholar
|
[19]
|
G.H. Golub, and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, Maryland, 1996.
Google Scholar
|
[20]
|
R.A. Horn, and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
Google Scholar
|
[21]
|
A.S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.
Google Scholar
|
[22]
|
D.Y. Hu, and L. Reichel, Krylov-subspace methods for the Sylvester equation, Linear Algebra Appl., 172(1992), 283-313.
Google Scholar
|
[23]
|
Tiexiang Li, Peter Chang-Yi Weng, Eric King-wah Chu, and Wen-Wei Lin, Large-scale Stein and Lyapunov equations, Smith method, and applications, Numer. Algorithms, 63(2013)(4), 727-752.
Google Scholar
|
[24]
|
M. Lin, and C. Chinag, A note on Sylvester-type equations, J. Franklin. I., 352(2015)(5), 2171-2186.
Google Scholar
|
[25]
|
M. Robbe, and M. Sadkane, A convergence analysis of GMRES and FOM methods for Sylvester equations, Numer. Algorithms, 30(2002), 71-89.
Google Scholar
|
[26]
|
D.E. Rutherford, On the solution of the matrix equation AX+XB=C, Nederl. Akad. Wetensch. Proc. Ser. A., 35(1932), 53-59.
Google Scholar
|
[27]
|
Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Press, New York, 1995.
Google Scholar
|
[28]
|
Y. Saad, and M.H. Schultz, GMRES, A generalized minimal residual algorithm for nonsymmetric linear systems, SIAM J. Sci. Statist.Comput, 7(1986), 856-869.
Google Scholar
|
[29]
|
V. Simoncini, On the numerical solution of AX -XB=C, BIT, 366(1996), 181-193.
Google Scholar
|
[30]
|
R.A. Smith, Matrix equation XA+BX=C, SIAM J.Appl.Math, 16(1968)(1), 198-201.
Google Scholar
|
[31]
|
D. Sorensen, and A. Antoulas, The Sylvester equation and approximate balanced reduction, Linear Algebra Appl, 351-352(2002), 671-700.
Google Scholar
|
[32]
|
G. Starke, and R.S. Varga, A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math., 64(1993), 213-240.
Google Scholar
|
[33]
|
J.P. Thiran, M. Matelart, and B.Le Bailly, On the generalized ADI method for the matrix equation X -AXB=C, J. Comput. Appl. Math, 156(2003), 285-302.
Google Scholar
|
[34]
|
E.L. Wachspress, Iterative solution of the Lyapanov matrix equation, Appl. Math. Lett., 1(1988), 87-90.
Google Scholar
|
[35]
|
E.L. Wachspress, in:D.R. Kincaid, L.J. Hayes (Eds.), The ADI Minimax Problem for Complex Spectra in Iterative Methods for Large Linear Systems, Academic, San Diego, 251-271, 1990.
Google Scholar
|
[36]
|
J. Xue, S. Xu, and R.-C. Li, Accurate solutions of M-matrix Sylvester equations, Numer. Math., doi:10.1007/s00211-011-0420-1, 2011.
Google Scholar
|
[37]
|
B. Zhou, J. Lam, and G.-R. Duan, On Smith-type iterative algorithms for the Stein matrix equation, Appl. Math. Lett., 22(2009)(7), 1038-1044.
Google Scholar
|
[38]
|
D. Zhou, Guo. Chen, and Q. Cai, On modified HSS iteration methods for continuous Sylvester equations, Appl. Math. Comput., 263(2015), 84-93.
Google Scholar
|
[39]
|
R. Zhou, X. Wang, and X. Tang, A generalization of the Hermitian and skew-Hermitian splitting iteration method for solving Sylvester equations, Appl. Math. Comput., 271(2015), 609-617.
Google Scholar
|