2016 Volume 6 Issue 3
Article Contents

Guangchong Yang, Kunquan Lan. A FIXED POINT INDEX THEORY FOR NOWHERE NORMAL-OUTWARD COMPACT MAPS AND APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2016, 6(3): 665-683. doi: 10.11948/2016044
Citation: Guangchong Yang, Kunquan Lan. A FIXED POINT INDEX THEORY FOR NOWHERE NORMAL-OUTWARD COMPACT MAPS AND APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2016, 6(3): 665-683. doi: 10.11948/2016044

A FIXED POINT INDEX THEORY FOR NOWHERE NORMAL-OUTWARD COMPACT MAPS AND APPLICATIONS

  • Fund Project:
  • A fixed point index theory is developed for a class of nowhere normal-outward compact maps defined on a cone which do not necessarily take values in the cone. This class depends on the retractions on the cone and contains self-maps for any retractions, and weakly inward maps and generalized inward maps when the retraction is a continuous metric projection. The new index coincides with the previous fixed point index theories for compact self-maps and generalized inward compact maps. New fixed point theorems are obtained for nowhere normal-outward compact maps and applied to treat some abstract boundary value problems and Sturm-Liouville boundary value problems with nonlinearities changing signs.
    MSC: 47H11;34B18;47H10;47H30
  • 加载中
  • [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18(1976), 620-709.

    Google Scholar

    [2] V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP, Proc. Amer. Math. Soc., 124(1996), 757-763.

    Google Scholar

    [3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1(1951), 353-367.

    Google Scholar

    [4] B. Halpern and G. Bergman, A fixed point theorem for inward and outward maps, Trans. Amer. Math. Soc., 130(1968), 353-358.

    Google Scholar

    [5] M. A. Krasnosel'skii and P. P. Zabreiko, Geometric methods of nonlinear analysis, Springer Verlag, Berlin, 1984.

    Google Scholar

    [6] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10(1962), 199-325.

    Google Scholar

    [7] K. Q. Lan, A fixed point theory for weakly inward S-contractive maps, Nonlinear Anal., 45(2001), 189-201.

    Google Scholar

    [8] K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63(2001)(2), 690-704.

    Google Scholar

    [9] K. Q. Lan, Multiple positive solutions of semi-positone Sturm-Liouvilie boundary value problems, Bull. London Math. Soc., 38(2006), 283-293.

    Google Scholar

    [10] K. Q. Lan, Positive solutions of semi-positone Hammerstein integral equations and applications, Commun. Pure Appl. Anal., 6(2007)(2), 441-451.

    Google Scholar

    [11] K. Q. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal., 71(2009)(12), 5979-5993.

    Google Scholar

    [12] K. Q. Lan, Existence of nonzero positive solutions of systems of second order elliptic boundary value problems, J. Appl. Anal. Comput., 1(2011)(1), 21-31.

    Google Scholar

    [13] K. Q. Lan and J. R. L. Webb, A fixed point index for generalized inward mappings of condensing type, Trans. Amer. Math. Soc., 349(1997), 2175-2186.

    Google Scholar

    [14] D. Ludwig, D. C. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8(1979), 217-258.

    Google Scholar

    [15] R. Ma, Existence of positive solutions for superlinear semipositone m-point boundary-value problems, Proc. Edinburgh Math. Soc., 46(2003), 279-292.

    Google Scholar

    [16] R. H. Martin, Nonlinear operators and differential equations in Banach spaces, Wiley, New York, 1976.

    Google Scholar

    [17] R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 84(1971), 217-258.

    Google Scholar

    [18] B. P. Rynne, Second order, Sturm-Liouville problems with asymmetric, superlinear nonlinearities Ⅱ, Nonlinear Anal., 57(2004), 905-916.

    Google Scholar

    [19] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27(2006)(1), 91-116.

    Google Scholar

    [20] G. C. Yang and P. F. Zhou, A new existence result of positive solutions for the Sturm-Liouville boundary value problems, Appl. Math. Lett., 27(2014), 1401-1406.

    Google Scholar

Article Metrics

Article views(2728) PDF downloads(1339) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint