[1]
|
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18(1976), 620-709.
Google Scholar
|
[2]
|
V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP, Proc. Amer. Math. Soc., 124(1996), 757-763.
Google Scholar
|
[3]
|
J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1(1951), 353-367.
Google Scholar
|
[4]
|
B. Halpern and G. Bergman, A fixed point theorem for inward and outward maps, Trans. Amer. Math. Soc., 130(1968), 353-358.
Google Scholar
|
[5]
|
M. A. Krasnosel'skii and P. P. Zabreiko, Geometric methods of nonlinear analysis, Springer Verlag, Berlin, 1984.
Google Scholar
|
[6]
|
M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10(1962), 199-325.
Google Scholar
|
[7]
|
K. Q. Lan, A fixed point theory for weakly inward S-contractive maps, Nonlinear Anal., 45(2001), 189-201.
Google Scholar
|
[8]
|
K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63(2001)(2), 690-704.
Google Scholar
|
[9]
|
K. Q. Lan, Multiple positive solutions of semi-positone Sturm-Liouvilie boundary value problems, Bull. London Math. Soc., 38(2006), 283-293.
Google Scholar
|
[10]
|
K. Q. Lan, Positive solutions of semi-positone Hammerstein integral equations and applications, Commun. Pure Appl. Anal., 6(2007)(2), 441-451.
Google Scholar
|
[11]
|
K. Q. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal., 71(2009)(12), 5979-5993.
Google Scholar
|
[12]
|
K. Q. Lan, Existence of nonzero positive solutions of systems of second order elliptic boundary value problems, J. Appl. Anal. Comput., 1(2011)(1), 21-31.
Google Scholar
|
[13]
|
K. Q. Lan and J. R. L. Webb, A fixed point index for generalized inward mappings of condensing type, Trans. Amer. Math. Soc., 349(1997), 2175-2186.
Google Scholar
|
[14]
|
D. Ludwig, D. C. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8(1979), 217-258.
Google Scholar
|
[15]
|
R. Ma, Existence of positive solutions for superlinear semipositone m-point boundary-value problems, Proc. Edinburgh Math. Soc., 46(2003), 279-292.
Google Scholar
|
[16]
|
R. H. Martin, Nonlinear operators and differential equations in Banach spaces, Wiley, New York, 1976.
Google Scholar
|
[17]
|
R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 84(1971), 217-258.
Google Scholar
|
[18]
|
B. P. Rynne, Second order, Sturm-Liouville problems with asymmetric, superlinear nonlinearities Ⅱ, Nonlinear Anal., 57(2004), 905-916.
Google Scholar
|
[19]
|
J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27(2006)(1), 91-116.
Google Scholar
|
[20]
|
G. C. Yang and P. F. Zhou, A new existence result of positive solutions for the Sturm-Liouville boundary value problems, Appl. Math. Lett., 27(2014), 1401-1406.
Google Scholar
|