2016 Volume 6 Issue 4
Article Contents

Zhihua Wang, Prasanna K. Sahoo. STABILITY OF THE GENERALIZED QUADRATIC AND QUARTIC TYPE FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPACES[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 917-938. doi: 10.11948/2016060
Citation: Zhihua Wang, Prasanna K. Sahoo. STABILITY OF THE GENERALIZED QUADRATIC AND QUARTIC TYPE FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPACES[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 917-938. doi: 10.11948/2016060

STABILITY OF THE GENERALIZED QUADRATIC AND QUARTIC TYPE FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPACES

  • Fund Project:
  • In this paper, we prove some stability results concerning the generalized quadratic and quartic type functional equation in the context of nonArchimedean fuzzy normed spaces in the spirit of Hyers-Ulam-Rassias. As applications, we establish some results of approximately generalized quadratic and quartic type mapping in non-Archimedean normed spaces. Also, we show that the assumption of the non-Archimedean absolute value of 2 is less than 1 cannot be omitted in our corollaries. The results improve and extend some recent results.
    MSC: 39B82;39B72
  • 加载中
  • [1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.

    Google Scholar

    [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.

    Google Scholar

    [3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(2003), 687-705.

    Google Scholar

    [4] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst., 151(2005), 513-547.

    Google Scholar

    [5] J. Brzdȩk, W. Fechner, M. S. Moslehian and J. Sikorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal., 9(2015), 278-326.

    Google Scholar

    [6] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86(1994), 429-436.

    Google Scholar

    [7] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1984), 76-86.

    Google Scholar

    [8] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc., 40(2003), 565-576.

    Google Scholar

    [9] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 48(1992), 239-248.

    Google Scholar

    [10] G. L. Forti, The stability of homomorphisms and amembility, with applications to functional equations, Abh. Math. Sem. Univ. Hamburg, 57(1987), 215-226.

    Google Scholar

    [11] P. Găvruţă, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.

    Google Scholar

    [12] M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl., 2009, Article ID 153084; 26 pages.

    Google Scholar

    [13] B. Lafuerza Guillén, J. A. Rodriguez Lallena and C. Sempi, Probabilistic norms for linear operators, J. Math. Anal. Appl., 220(1998), 462-476.

    Google Scholar

    [14] K. Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6(1897), 83-88.

    Google Scholar

    [15] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.

    Google Scholar

    [16] S. M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38(2001), 645-656.

    Google Scholar

    [17] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011.

    Google Scholar

    [18] O. Kaleva and S.Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12(1984), 215-229.

    Google Scholar

    [19] Pl. Kannappan, Quadratic functional equation and inner product spaces, Result. Math., 27(1995), 368-372.

    Google Scholar

    [20] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009.

    Google Scholar

    [21] A. K. Katsaras, Fuzzy topological vector spaces Ⅱ, Fuzzy Sets Syst., 12(1984), 143-154.

    Google Scholar

    [22] A. Khrennikov, Non-Archimedean Analysis:QuantumParadoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar

    [23] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11(1975), 326-334.

    Google Scholar

    [24] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst., 63(1994), 207-217.

    Google Scholar

    [25] S. H. Lee, S. M. Im and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307(2005), 387-394.

    Google Scholar

    [26] D.Miheţ, On set-valued nonlinear equations in Menger probabilistic normed spaces, Fuzzy Sets Syst., 158(2007), 1823-1831.

    Google Scholar

    [27] A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc., 46(2009), 387-400.

    Google Scholar

    [28] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-UlamRassias theorem, Fuzzy Sets Syst., 159(2008), 720-729.

    Google Scholar

    [29] A. K. Mirmostafaee and M. S. Moslehian, Stability of additive mappings in nonArchimedean fuzzy normed spaces, Fuzzy Sets Syst., 160(2009), 1643-1652.

    Google Scholar

    [30] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inf. Sci., 178(2008), 3791-3798.

    Google Scholar

    [31] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159(2008), 730-738.

    Google Scholar

    [32] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in nonArchimedean spaces, Appl. Anal. Discrete Math., 1(2007), 325-334.

    Google Scholar

    [33] L. Narici and E. Beckenstein, Strange terrain-non-Archimedean spaces, Am. Math. Mon., 88(1981), 667-676.

    Google Scholar

    [34] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.

    Google Scholar

    [35] Th. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Math. Ser. Ⅲ, 34(1999), 243-252.

    Google Scholar

    [36] Robert A. M., A course in p-adic analysis, Springer-Verlag, New York, 2000.

    Google Scholar

    [37] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011.

    Google Scholar

    [38] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.

    Google Scholar

    [39] J.-Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133(2003), 389-399.

    Google Scholar

Article Metrics

Article views(2555) PDF downloads(844) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint