[1]
|
M.S. Alber, R. Camassa, N.F. Yuri, D.D. Holm and J.E. Marsden, The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDEs of shallow water and dym type, Commun. Math. Phys., 221(2001), 197-227.
Google Scholar
|
[2]
|
R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71(1993), 1661-1664.
Google Scholar
|
[3]
|
A. Degasperis and M. Procesi, Asymptotic integrability symmetry and perturbation theory, in:A. Degasperis, G. Gaeta (Eds.), World Scientific, Singapore, 1999, 23-37.
Google Scholar
|
[4]
|
A.S. Fokas, On a class of physically important integrable equations, Physica D, 87(1995), 145-150.
Google Scholar
|
[5]
|
B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations:Generalizations of the Camassa-Holm equation, Physica D, 95(1996), 229-243.
Google Scholar
|
[6]
|
X.G. Geng and B. Xue, A three-component generalization of Camassa-Holm equation with N-peakon solutions, Adv. Math., 226(2011), 827-839.
Google Scholar
|
[7]
|
A.N.W. Hone and J.P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A:Math. Theor., 41(2008), 372002.
Google Scholar
|
[8]
|
N.H. Li, Q.P. Liu and Z. Popowicz, A four-component Camassa-Holm type hierarchy, Journal of Geometry and Physics, 85(2014), 29-39.
Google Scholar
|
[9]
|
P.J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53(1996), 1900-1906.
Google Scholar
|
[10]
|
Z.J. Qiao, The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold, Commun. Math. Phys., 239(2003), 309-342.
Google Scholar
|
[11]
|
Z.J. Qiao, Integrable hierarchy, 3×3 constrained systems, and parametric solutions, Acta Applicandae Mathematicae, 83(2004), 199-220.
Google Scholar
|
[12]
|
Z.J. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47(2006), 112701-09.
Google Scholar
|
[13]
|
Z.J. Qiao, New integrable hierarchy, its parametric solutions, cuspons, one-peak solutions, and M/Wshape peak solitons, J. Math. Phys., 48(2007), 082701.
Google Scholar
|
[14]
|
Z.J. Qiao and X.Q. Li, An integrable equation with nonsmooth solitons, Theor. Math. Phys., 167(2011), 584-589.
Google Scholar
|
[15]
|
V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A:Math. Theor., 42(2009), 342002.
Google Scholar
|
[16]
|
J.F. Song, C.Z. Qu and Z.J. Qiao, A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52(2011), 013503.
Google Scholar
|
[17]
|
B.Q. Xia and Z.J. Qiao, Integrable multi-component Camassa-Holm system, arXiv:1310.0268, Exactly Solvable and Integrable Systems (nlin.SI).
Google Scholar
|
[18]
|
B.Q. Xia, Z.J. Qiao and R.G. Zhou, A synthetical integrable two-component model with peakon solutions, arXiv:1301.3216.
Google Scholar
|