2016 Volume 6 Issue 4
Article Contents

Cheng Cheng, Fushan Huang, Yong Li. AFFINE-PERIODIC SOLUTIONS AND PSEUDO AFFINE-PERIODIC SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH EXPONENTIAL DICHOTOMY AND EXPONENTIAL TRICHOTOMY[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 950-967. doi: 10.11948/2016062
Citation: Cheng Cheng, Fushan Huang, Yong Li. AFFINE-PERIODIC SOLUTIONS AND PSEUDO AFFINE-PERIODIC SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH EXPONENTIAL DICHOTOMY AND EXPONENTIAL TRICHOTOMY[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 950-967. doi: 10.11948/2016062

AFFINE-PERIODIC SOLUTIONS AND PSEUDO AFFINE-PERIODIC SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH EXPONENTIAL DICHOTOMY AND EXPONENTIAL TRICHOTOMY

  • Fund Project:
  • It is proved that every (Q, T)-affine-periodic differential equation has a (Q, T)-affine-periodic solution if the corresponding homogeneous linear equation admits exponential dichotomy or exponential trichotomy. This kind of "periodic" solutions might be usual periodic or quasi-periodic ones if Q is an identity matrix or orthogonal matrix. Hence solutions also possess certain symmetry in geometry. The result is also extended to the case of pseudo affine-periodic solutions.
    MSC: 34D09;34K14
  • 加载中
  • [1] E. Ait Dads and O. Arino, Exponential dichotomy and existence of pseudo almost-periodic solutions of some differential equations, Nonlinear Anal., 27(1996)(4), 369-386.

    Google Scholar

    [2] M. U. Akhmet, Existence and stability of almost-periodic solutions of quasilinear differential equations with deviating argument, Appl. Math. Lett., 17(2004)(10), 1177-1181.

    Google Scholar

    [3] X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete and Continuous Dynamical Systems, forthcoming.

    Google Scholar

    [4] Y. Chen, J. J. Nieto and D. O'Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett., 24(2011)(3), 302-307.

    Google Scholar

    [5] Y. Chen, D. O'Regan and Ravi P. Agarwal, Anti-periodic solutions for semilinear evolution equations in Banach spaces, J. Appl. Math. Comput., 38(2012)(1-2), 63-70.

    Google Scholar

    [6] S.N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflows in Banach spaces, J. Differential Equations, 120(1995), 429-477.

    Google Scholar

    [7] W.A. Coppel, Dichotomies in Stability Theory, in:Lecture Notes in Mathematics, vol. 629, Springer-Verlag, Berlin, New York, 1978.

    Google Scholar

    [8] L. Dieci, C. Elia and E. Van Vleck, Exponential dichotomy on the real line:SVD and QR methods, J. Differential Equations, 248(2010)(2), 287-308.

    Google Scholar

    [9] N. Dilan and M. Fečkan, On symmetric and periodic solutions of parametric weakly nonlinear ODE with time-reversal symmetries, Bull. Belg. Math. Soc. Simon Stevin, 18(2011)(5), 896-923.

    Google Scholar

    [10] S. Elaydi and O. Hajek, Exponential trichotomy of differential systems, J. Math. Anal. Appl., 129(1988), 362-374.

    Google Scholar

    [11] Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Advanced Nonlinear Studies, 15(2015), 241-252.

    Google Scholar

    [12] J. Liang, J. Zhang and T. Xiao, Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2008)(2), 1493-1499.

    Google Scholar

    [13] K. J. Palmer, Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations, J. Differential Equations, 46(1982)(3), 324-345.

    Google Scholar

    [14] K. J. Palmer, Exponential dichotomy and expansivity, Ann. Mat. Pura Appl., 185(2006)(4), S171-S185.

    Google Scholar

    [15] O. Perron, Die Stabilitätsfrage bei differentialgleichungen, Math. Z., 32(1930), 703-728.

    Google Scholar

    [16] V.A. Pliss and G.R. Sell, Robustness of exponential dichotomies in infinitedimensional dynamical systems, J. Dynam. Differential Equations, 11(1999), 471-513.

    Google Scholar

    [17] H. M. Rodrigues and M. Silveira, On the relationship between exponential dichotomies and the Fredholm alternative, J. Differential Equations, 73(1988)(1), 78-81.

    Google Scholar

    [18] R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems I, Ⅱ, Ⅲ, J. Differential Equations, 15(1974), 429-458; 22(1976)(2), 478-496; 22(1976)(2), 497-522.

    Google Scholar

    [19] Y. Wang and Y. Li, Alternative theorems for pseudo almost automorphic problems, Taiwanese J. Math., 15(2011)(1), 59-74.

    Google Scholar

    [20] C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equation, Rocky Mountain J. Math. 2015, volume forthcoming, number forthcoming.

    Google Scholar

    [21] Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal. Art., ID 157140, 2013, 25-34.

    Google Scholar

Article Metrics

Article views(3008) PDF downloads(1229) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint