[1]
|
E. Ait Dads and O. Arino, Exponential dichotomy and existence of pseudo almost-periodic solutions of some differential equations, Nonlinear Anal., 27(1996)(4), 369-386.
Google Scholar
|
[2]
|
M. U. Akhmet, Existence and stability of almost-periodic solutions of quasilinear differential equations with deviating argument, Appl. Math. Lett., 17(2004)(10), 1177-1181.
Google Scholar
|
[3]
|
X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete and Continuous Dynamical Systems, forthcoming.
Google Scholar
|
[4]
|
Y. Chen, J. J. Nieto and D. O'Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett., 24(2011)(3), 302-307.
Google Scholar
|
[5]
|
Y. Chen, D. O'Regan and Ravi P. Agarwal, Anti-periodic solutions for semilinear evolution equations in Banach spaces, J. Appl. Math. Comput., 38(2012)(1-2), 63-70.
Google Scholar
|
[6]
|
S.N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflows in Banach spaces, J. Differential Equations, 120(1995), 429-477.
Google Scholar
|
[7]
|
W.A. Coppel, Dichotomies in Stability Theory, in:Lecture Notes in Mathematics, vol. 629, Springer-Verlag, Berlin, New York, 1978.
Google Scholar
|
[8]
|
L. Dieci, C. Elia and E. Van Vleck, Exponential dichotomy on the real line:SVD and QR methods, J. Differential Equations, 248(2010)(2), 287-308.
Google Scholar
|
[9]
|
N. Dilan and M. Fečkan, On symmetric and periodic solutions of parametric weakly nonlinear ODE with time-reversal symmetries, Bull. Belg. Math. Soc. Simon Stevin, 18(2011)(5), 896-923.
Google Scholar
|
[10]
|
S. Elaydi and O. Hajek, Exponential trichotomy of differential systems, J. Math. Anal. Appl., 129(1988), 362-374.
Google Scholar
|
[11]
|
Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Advanced Nonlinear Studies, 15(2015), 241-252.
Google Scholar
|
[12]
|
J. Liang, J. Zhang and T. Xiao, Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2008)(2), 1493-1499.
Google Scholar
|
[13]
|
K. J. Palmer, Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations, J. Differential Equations, 46(1982)(3), 324-345.
Google Scholar
|
[14]
|
K. J. Palmer, Exponential dichotomy and expansivity, Ann. Mat. Pura Appl., 185(2006)(4), S171-S185.
Google Scholar
|
[15]
|
O. Perron, Die Stabilitätsfrage bei differentialgleichungen, Math. Z., 32(1930), 703-728.
Google Scholar
|
[16]
|
V.A. Pliss and G.R. Sell, Robustness of exponential dichotomies in infinitedimensional dynamical systems, J. Dynam. Differential Equations, 11(1999), 471-513.
Google Scholar
|
[17]
|
H. M. Rodrigues and M. Silveira, On the relationship between exponential dichotomies and the Fredholm alternative, J. Differential Equations, 73(1988)(1), 78-81.
Google Scholar
|
[18]
|
R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems I, Ⅱ, Ⅲ, J. Differential Equations, 15(1974), 429-458; 22(1976)(2), 478-496; 22(1976)(2), 497-522.
Google Scholar
|
[19]
|
Y. Wang and Y. Li, Alternative theorems for pseudo almost automorphic problems, Taiwanese J. Math., 15(2011)(1), 59-74.
Google Scholar
|
[20]
|
C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equation, Rocky Mountain J. Math. 2015, volume forthcoming, number forthcoming.
Google Scholar
|
[21]
|
Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal. Art., ID 157140, 2013, 25-34.
Google Scholar
|