[1]
|
X. Ai and G. Gui, On the inverse scattering problem and the low regularity solutions for the Dullin-Gottwald-Holm equation, Nonlinear Anal.:Real World Appl., 11(2010), 888-894.
Google Scholar
|
[2]
|
A. Biswas and A. Kara, 1-Soliton solution and conservation laws of the generalized Dullin-Gottwald-Holm equation, Appl. Math. Comput., 217(2010), 929-932.
Google Scholar
|
[3]
|
C. Chen, Y. Li and J. Zhang, The multi-soliton solutions of the CH-γ equation, Sci. China (Ser A), 51(2008), 314-320.
Google Scholar
|
[4]
|
O. Christov and S. Hakkaev, On the inverse scattering approach and actionangle variables for the Dullin-Gottwald-Holm equation, Physica D, 238(2009), 9-19.
Google Scholar
|
[5]
|
X. Deng, Exact peaked wave solution of CH-γ equation by the first-integral method, Appl. Math. Comput., 206(2008), 806-809.
Google Scholar
|
[6]
|
H. Dullin, G. Gottwald and D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87(2001)194501-1-194501-4.
Google Scholar
|
[7]
|
H. Dullin, G. Gottwald and D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33(2003), 73-95.
Google Scholar
|
[8]
|
B. Guo and Z. Liu, Cusp wave solutions in CH-γ equation, Sci. China (Ser A), 33(2003), 325-337.
Google Scholar
|
[9]
|
B. Guo and Z. Liu, Peaked wave solutions in CH-γ equation, Sci. China (Ser A), 46(2003), 696-709.
Google Scholar
|
[10]
|
Z. Guo and L. Ni, Wave breaking for the periodic weakly dissipative DullinGottwald-Holm equation, Nonlinear Anal., 74(2011), 965-973.
Google Scholar
|
[11]
|
T. Ha and H. Liu, On travelling wave solutions of the θ-equation of disperisve type, J. Math. Anal. Appl., 421(2015), 399-414.
Google Scholar
|
[12]
|
J. Li, Singular nonlinear travelling wave equations:Bifurcations and exact solution, Science press, Beijing, 2013.
Google Scholar
|
[13]
|
J. Li, Dynamical understanding of loop soliton solution for several nonlinear wave equations, Sci. China Ser. A:Math., 50(2007), 773-785.
Google Scholar
|
[14]
|
J. Li and G. Chen, On nonlinear wave equations with breaking loop-solutions, Int. J. Bifur. Chaos, 20(2010), 519-537.
Google Scholar
|
[15]
|
Y. Liu, Global existence and blow-up solutions for a nonlinear shallow water equation, Math. Ann., 335(2006), 717-735.
Google Scholar
|
[16]
|
X. Liu and Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Anal., 74(2011), 2497-2507.
Google Scholar
|
[17]
|
X. Liu and Z. Yin, Orbital stability of the sum of N peakons for the DullinGottwald-Holm equation, Nonlinear Anal.:Real World Appl., 13(2012), 2414-2422.
Google Scholar
|
[18]
|
X. Liu and Z. Yin, Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 88(2013), 1-15.
Google Scholar
|
[19]
|
Q. Meng, B. He, Y. Long and Z. Li, New exact periodic wave solutions for the Dullin-Gottwald-Holm equation, Appl. Math. Comput., 218(2011), 4533-4537.
Google Scholar
|
[20]
|
R. Naz, I. Naeem and S. Abelman, Conservation laws for Camassa-Holm equation, Dullin-Gottwald-Holm equation and generalized Dullin-Gottwald-Holm equation, Nonlinear Anal.:Real World Appl., 10(2009), 3466-3471.
Google Scholar
|
[21]
|
A. Nguetcho, J. Li and J. Bilbault, Bifurcations of phase portraits of a singular nonlinear equation of the second class, Commun. Nonlinear Sci. Numer. Simulat., 19(2014), 2590-2601.
Google Scholar
|
[22]
|
T. Rehman, G. Gambino and S. Choudhury, Smooth and non-smooth travelling wave solutions of some generalized Camassa-Holm equations, Commun. Nonlinear Sci. Numer. Simulat., 19(2014), 1746-1769.
Google Scholar
|
[23]
|
C. Shen, L. Tian and A. Gao, Optimal control of the viscous Dullin-GottwalldHolm equation, Nonlinear Anal.:Real World Appl., 11(2010), 480-491.
Google Scholar
|
[24]
|
B. Sun, Maximum principle for optimal distributed control of the viscous DullinGottwald-Holm equation, Nonlinear Anal.:Real World Appl., 13(2012), 325-332.
Google Scholar
|
[25]
|
G. Xiao, D. Xian and X. Liu, Application of Exp-function method to DullinGottwald-Holm equation, Appl. Math. Comput., 210(2009), 536-541.
Google Scholar
|
[26]
|
K. Yan and Z. Yin, On the solutions of the Dullin-Gottwald-Holm equation in Besov spaces, Nonlinear Anal.:Real World Appl., 13(2012), 2580-2592.
Google Scholar
|
[27]
|
J. Yin and L. Tian, Stumpons and fractal-like wave solutions to the DullinGottwald-Holm equation, Chaos, Solitons Fract., 42(2009), 643-648.
Google Scholar
|
[28]
|
J. Zhou, L. Tian, W. Zhang and S. Kumar, Peakon-antipeakon interaction in the Dullin-Gottwald-Holm equation, Phys. Lett. A, 377(2013), 1233-1238.
Google Scholar
|
[29]
|
M. Zhu and J. Xua, On the wave-breaking phenomena for the periodic twocomponent Dullin-Gottwald-Holm system, J. Math. Anal. Appl., 391(2012), 415-428.
Google Scholar
|