2016 Volume 6 Issue 4
Article Contents

Weiqin Yu, Na Li, Fangqi Chen, Shouwei Zhao. EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS FOR THE DULLIN-GOTTWALD-HOLM EQUATION[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 968-980. doi: 10.11948/2016063
Citation: Weiqin Yu, Na Li, Fangqi Chen, Shouwei Zhao. EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS FOR THE DULLIN-GOTTWALD-HOLM EQUATION[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 968-980. doi: 10.11948/2016063

EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS FOR THE DULLIN-GOTTWALD-HOLM EQUATION

  • Fund Project:
  • Utilizing the methods of dynamical system theory, the DullinGottwald-Holm equation is studied in this paper. The dynamical behaviors of the traveling wave solutions and their bifurcations are presented in different parameter regions. Furthermore, the exact explicit forms of all possible bounded solutions, such as solitary wave solutions, periodic wave solutions and breaking loop wave solutions are obtained.
    MSC: 34C37;34C23;74J30
  • 加载中
  • [1] X. Ai and G. Gui, On the inverse scattering problem and the low regularity solutions for the Dullin-Gottwald-Holm equation, Nonlinear Anal.:Real World Appl., 11(2010), 888-894.

    Google Scholar

    [2] A. Biswas and A. Kara, 1-Soliton solution and conservation laws of the generalized Dullin-Gottwald-Holm equation, Appl. Math. Comput., 217(2010), 929-932.

    Google Scholar

    [3] C. Chen, Y. Li and J. Zhang, The multi-soliton solutions of the CH-γ equation, Sci. China (Ser A), 51(2008), 314-320.

    Google Scholar

    [4] O. Christov and S. Hakkaev, On the inverse scattering approach and actionangle variables for the Dullin-Gottwald-Holm equation, Physica D, 238(2009), 9-19.

    Google Scholar

    [5] X. Deng, Exact peaked wave solution of CH-γ equation by the first-integral method, Appl. Math. Comput., 206(2008), 806-809.

    Google Scholar

    [6] H. Dullin, G. Gottwald and D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87(2001)194501-1-194501-4.

    Google Scholar

    [7] H. Dullin, G. Gottwald and D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33(2003), 73-95.

    Google Scholar

    [8] B. Guo and Z. Liu, Cusp wave solutions in CH-γ equation, Sci. China (Ser A), 33(2003), 325-337.

    Google Scholar

    [9] B. Guo and Z. Liu, Peaked wave solutions in CH-γ equation, Sci. China (Ser A), 46(2003), 696-709.

    Google Scholar

    [10] Z. Guo and L. Ni, Wave breaking for the periodic weakly dissipative DullinGottwald-Holm equation, Nonlinear Anal., 74(2011), 965-973.

    Google Scholar

    [11] T. Ha and H. Liu, On travelling wave solutions of the θ-equation of disperisve type, J. Math. Anal. Appl., 421(2015), 399-414.

    Google Scholar

    [12] J. Li, Singular nonlinear travelling wave equations:Bifurcations and exact solution, Science press, Beijing, 2013.

    Google Scholar

    [13] J. Li, Dynamical understanding of loop soliton solution for several nonlinear wave equations, Sci. China Ser. A:Math., 50(2007), 773-785.

    Google Scholar

    [14] J. Li and G. Chen, On nonlinear wave equations with breaking loop-solutions, Int. J. Bifur. Chaos, 20(2010), 519-537.

    Google Scholar

    [15] Y. Liu, Global existence and blow-up solutions for a nonlinear shallow water equation, Math. Ann., 335(2006), 717-735.

    Google Scholar

    [16] X. Liu and Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Anal., 74(2011), 2497-2507.

    Google Scholar

    [17] X. Liu and Z. Yin, Orbital stability of the sum of N peakons for the DullinGottwald-Holm equation, Nonlinear Anal.:Real World Appl., 13(2012), 2414-2422.

    Google Scholar

    [18] X. Liu and Z. Yin, Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm system, Nonlinear Anal., 88(2013), 1-15.

    Google Scholar

    [19] Q. Meng, B. He, Y. Long and Z. Li, New exact periodic wave solutions for the Dullin-Gottwald-Holm equation, Appl. Math. Comput., 218(2011), 4533-4537.

    Google Scholar

    [20] R. Naz, I. Naeem and S. Abelman, Conservation laws for Camassa-Holm equation, Dullin-Gottwald-Holm equation and generalized Dullin-Gottwald-Holm equation, Nonlinear Anal.:Real World Appl., 10(2009), 3466-3471.

    Google Scholar

    [21] A. Nguetcho, J. Li and J. Bilbault, Bifurcations of phase portraits of a singular nonlinear equation of the second class, Commun. Nonlinear Sci. Numer. Simulat., 19(2014), 2590-2601.

    Google Scholar

    [22] T. Rehman, G. Gambino and S. Choudhury, Smooth and non-smooth travelling wave solutions of some generalized Camassa-Holm equations, Commun. Nonlinear Sci. Numer. Simulat., 19(2014), 1746-1769.

    Google Scholar

    [23] C. Shen, L. Tian and A. Gao, Optimal control of the viscous Dullin-GottwalldHolm equation, Nonlinear Anal.:Real World Appl., 11(2010), 480-491.

    Google Scholar

    [24] B. Sun, Maximum principle for optimal distributed control of the viscous DullinGottwald-Holm equation, Nonlinear Anal.:Real World Appl., 13(2012), 325-332.

    Google Scholar

    [25] G. Xiao, D. Xian and X. Liu, Application of Exp-function method to DullinGottwald-Holm equation, Appl. Math. Comput., 210(2009), 536-541.

    Google Scholar

    [26] K. Yan and Z. Yin, On the solutions of the Dullin-Gottwald-Holm equation in Besov spaces, Nonlinear Anal.:Real World Appl., 13(2012), 2580-2592.

    Google Scholar

    [27] J. Yin and L. Tian, Stumpons and fractal-like wave solutions to the DullinGottwald-Holm equation, Chaos, Solitons Fract., 42(2009), 643-648.

    Google Scholar

    [28] J. Zhou, L. Tian, W. Zhang and S. Kumar, Peakon-antipeakon interaction in the Dullin-Gottwald-Holm equation, Phys. Lett. A, 377(2013), 1233-1238.

    Google Scholar

    [29] M. Zhu and J. Xua, On the wave-breaking phenomena for the periodic twocomponent Dullin-Gottwald-Holm system, J. Math. Anal. Appl., 391(2012), 415-428.

    Google Scholar

Article Metrics

Article views(2389) PDF downloads(1135) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint