[1]
|
R.P. Agarwal, A propos d'une Note M. Pierre Humbert, C. R. Acad. Sci. Paris, 236(1953), 2031-2032.
Google Scholar
|
[2]
|
M. Garg, P. Manohar and S.L. Kalla, A Mittag-Leffler-type function of two variables, Integral Transforms Spec. Funct., 24(2013), 934-944.
Google Scholar
|
[3]
|
R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applicaitons, Springer, 2014.
Google Scholar
|
[4]
|
H.J. Haubold, A.M. Mathai and R.K. Saxena, Mittag-Leffler function and their applications, J. Appl. Math., Review Article, 2011, Article ID 298628, 51 pages.
Google Scholar
|
[5]
|
P. Humbert, Quelques resultats d'le fonction de Mittag-Leffler, C. R. Acad. Sci. Paris, 236(1953), 1467-1468.
Google Scholar
|
[6]
|
P. Humbert and R. P. Agarwal, Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations, Bull. Sci. Math., 77(1953)(2), 180-185.
Google Scholar
|
[7]
|
V. Kadets and W. Zelazko, Functional Analysis and Its Applications, North-Holland Mathematics Studies, vol. 197, Elsevier Science B.V, Amsterdam, 2004.
Google Scholar
|
[8]
|
S.L. Kalla, V. Haidey and N. Virchenko, A generalized multi-parameter functions of Mittag-Leffler type, Integral Transforms Spec. Funct., 23(2012)(12), 901-911.
Google Scholar
|
[9]
|
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.
Google Scholar
|
[10]
|
A.A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., 15(2004), 31-49.
Google Scholar
|
[11]
|
Min-Jie Luo and R.K. Raina, On certain classes of fractional kinetic equations, Filomat, 28(2014)(10), 2077-2090.
Google Scholar
|
[12]
|
A.R. Miller, Certain summation and transformation formulas for generalized hypergeometric series, J. Comput. Appl. Math., 231(2009), 964-972.
Google Scholar
|
[13]
|
G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris, 137(1903), 554-558.
Google Scholar
|
[14]
|
T. Nishino, Function Theory in Several Complex Variables, American Mathematical Society, Providence, Rhode Island, 2001.
Google Scholar
|
[15]
|
F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, New York:Cambridge University Press, 2010.
Google Scholar
|
[16]
|
T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.
Google Scholar
|
[17]
|
R.K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2005)(2), 191-203.
Google Scholar
|
[18]
|
S.G. Samko, A.A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon et al., 1993.
Google Scholar
|
[19]
|
R.K. Saxena, S.L. Kalla and R. Saxena, Multivariate analogue of generalized Mittag-Leffler function, Integral Transforms Spec. Funct., 22(2011), 533-548.
Google Scholar
|
[20]
|
B.V. Shabat, Introduction to Complex Analysis, Part Ⅱ. Functions of Several Complex Variables, American Mathematical Society, Providence, Rhode Island, 1992.
Google Scholar
|
[21]
|
I.N. Sneddon, The use of the Integral Transforms, Tata McGraw-Hill, New Delhi, 1979.
Google Scholar
|
[22]
|
H.M. Srivastava and M.C. Daoust, Certain generalized Neumann expansion associated with Kampe de Feriet function, Nederl. Akad. Wetensch. Proc. Ser. A 72(Indag. Math.), 31(1969), 449-457.
Google Scholar
|
[23]
|
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
Google Scholar
|
[24]
|
R.K. Saxena and S.L. Kalla, Solutions of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels, J. Math. Math. Sci., 8(2005), 1155-1170.
Google Scholar
|
[25]
|
A. Wiman, Über den fundamental satz in der theorie der functionen Eα(x), Acta Math., 29(1905), 191-201.
Google Scholar
|
[26]
|
A. Wiman, Über die Nullstellun der funktionen Eα(x), Acta Math., 29(1905), 217-234.
Google Scholar
|