2016 Volume 6 Issue 4
Article Contents

Rakesh Kumar Parmar, Minjie Luo, Ravinder Krishna Raina. ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 981-999. doi: 10.11948/2016064
Citation: Rakesh Kumar Parmar, Minjie Luo, Ravinder Krishna Raina. ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2016, 6(4): 981-999. doi: 10.11948/2016064

ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS

  • The present paper studies and investigates a class of Mittag-Leffler type multivariable functions. We derive the necessary convergence conditions and establish several properties associated with this class and those related with the corresponding class of fractional integral operators. New extensions of the introduced definitions and special cases of some of the results are also pointed out.
    MSC: 33E12;32A05;26A33;47B38;47G10
  • 加载中
  • [1] R.P. Agarwal, A propos d'une Note M. Pierre Humbert, C. R. Acad. Sci. Paris, 236(1953), 2031-2032.

    Google Scholar

    [2] M. Garg, P. Manohar and S.L. Kalla, A Mittag-Leffler-type function of two variables, Integral Transforms Spec. Funct., 24(2013), 934-944.

    Google Scholar

    [3] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applicaitons, Springer, 2014.

    Google Scholar

    [4] H.J. Haubold, A.M. Mathai and R.K. Saxena, Mittag-Leffler function and their applications, J. Appl. Math., Review Article, 2011, Article ID 298628, 51 pages.

    Google Scholar

    [5] P. Humbert, Quelques resultats d'le fonction de Mittag-Leffler, C. R. Acad. Sci. Paris, 236(1953), 1467-1468.

    Google Scholar

    [6] P. Humbert and R. P. Agarwal, Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations, Bull. Sci. Math., 77(1953)(2), 180-185.

    Google Scholar

    [7] V. Kadets and W. Zelazko, Functional Analysis and Its Applications, North-Holland Mathematics Studies, vol. 197, Elsevier Science B.V, Amsterdam, 2004.

    Google Scholar

    [8] S.L. Kalla, V. Haidey and N. Virchenko, A generalized multi-parameter functions of Mittag-Leffler type, Integral Transforms Spec. Funct., 23(2012)(12), 901-911.

    Google Scholar

    [9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.

    Google Scholar

    [10] A.A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., 15(2004), 31-49.

    Google Scholar

    [11] Min-Jie Luo and R.K. Raina, On certain classes of fractional kinetic equations, Filomat, 28(2014)(10), 2077-2090.

    Google Scholar

    [12] A.R. Miller, Certain summation and transformation formulas for generalized hypergeometric series, J. Comput. Appl. Math., 231(2009), 964-972.

    Google Scholar

    [13] G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris, 137(1903), 554-558.

    Google Scholar

    [14] T. Nishino, Function Theory in Several Complex Variables, American Mathematical Society, Providence, Rhode Island, 2001.

    Google Scholar

    [15] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, New York:Cambridge University Press, 2010.

    Google Scholar

    [16] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.

    Google Scholar

    [17] R.K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2005)(2), 191-203.

    Google Scholar

    [18] S.G. Samko, A.A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon et al., 1993.

    Google Scholar

    [19] R.K. Saxena, S.L. Kalla and R. Saxena, Multivariate analogue of generalized Mittag-Leffler function, Integral Transforms Spec. Funct., 22(2011), 533-548.

    Google Scholar

    [20] B.V. Shabat, Introduction to Complex Analysis, Part Ⅱ. Functions of Several Complex Variables, American Mathematical Society, Providence, Rhode Island, 1992.

    Google Scholar

    [21] I.N. Sneddon, The use of the Integral Transforms, Tata McGraw-Hill, New Delhi, 1979.

    Google Scholar

    [22] H.M. Srivastava and M.C. Daoust, Certain generalized Neumann expansion associated with Kampe de Feriet function, Nederl. Akad. Wetensch. Proc. Ser. A 72(Indag. Math.), 31(1969), 449-457.

    Google Scholar

    [23] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

    Google Scholar

    [24] R.K. Saxena and S.L. Kalla, Solutions of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels, J. Math. Math. Sci., 8(2005), 1155-1170.

    Google Scholar

    [25] A. Wiman, Über den fundamental satz in der theorie der functionen Eα(x), Acta Math., 29(1905), 191-201.

    Google Scholar

    [26] A. Wiman, Über die Nullstellun der funktionen Eα(x), Acta Math., 29(1905), 217-234.

    Google Scholar

Article Metrics

Article views(2476) PDF downloads(1319) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint