[1]
|
R. Breban, J.M. Drake, D.E. Stallknecht and P. Rohani, The role of environmental transmission in recurrent avian influenza epidemics, PLoS Comput. Biol., 5(2009)(10), e1000346. doi:10.1371/journal.pcbi.1000346.
Google Scholar
|
[2]
|
C.J. Briggs and H.C.J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations, Am. Nat., 145(1995), 845-887.
Google Scholar
|
[3]
|
C.T. Codeço, Endemic and epidemic dynamics of cholera:the role of the aquatic reservoir, BMC Infect. Dis., 1(2001)(1), doi:10.1186/1471-2334-1-1.
Google Scholar
|
[4]
|
O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28(1990), 365-382.
Google Scholar
|
[5]
|
Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal. RWA., 13(2012), 2120-2133.
Google Scholar
|
[6]
|
N.M. Ferguson, C.A. Donnelly and R.M. Anderson, The foot-and-mouth epidemic in great Britain:pattern of spread and impact of interventions, Science, 292(2001), 1155-1160.
Google Scholar
|
[7]
|
H. Guo, M.Y. Li and Z.S Shuai, Global stability of the endemic equilibrium of multi-group SIR epidemic models, Canad. Appl. Math. Quart., 14(2006)(3), 259-284.
Google Scholar
|
[8]
|
H. Guo, M.Y. Li and Z.S. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136(2008), 2793-2802.
Google Scholar
|
[9]
|
J.K. Hale, P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20(1989), 388-395.
Google Scholar
|
[10]
|
G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63(2011), 125-139.
Google Scholar
|
[11]
|
V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111(1992), 1-71.
Google Scholar
|
[12]
|
M.J. Keeling and C.A. Gilligan, Meta-population dynamics of bubonic plague, Nature, 407(2000), 903-905.
Google Scholar
|
[13]
|
M.J. Keeling, M.E.J. Woolhouse, R.M. May, G. Davies and B.T. Grenfell, Modeling vaccination strategies against foot-and-mouth disease, Nature, 421(2003)(9), 136-142.
Google Scholar
|
[14]
|
R.J. Knell, M. Begon and D.J. Thompson, Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella:a test of the mass action assumption with an insect pathogen, Proc. R. Soc. London B Biol. Sci., 263(1996), 75-81.
Google Scholar
|
[15]
|
M.Y. Li, Z.S. Shuai and C.C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361(2010), 38-47.
Google Scholar
|
[16]
|
M.T. Li, G.Q. Sun, Y.F. Wu, J. Zhang and Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237(2014), 582-594.
Google Scholar
|
[17]
|
W.M. Liu and S.A.Levin, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23(1986), 187-204.
Google Scholar
|
[18]
|
S. Roy, T.F. McElwain and Y. Wan, A network control theory approach to modeling and optimal control of zoonoses:case study of brucellosis transmission in sub-saharan Africa, PLoS Negl. Trop. Dis., 5(2011)(10), e1259. doi:10.1371/journal.pntd. 0001259.
Google Scholar
|
[19]
|
G. Röst, J.H. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5(2008), 389-402.
Google Scholar
|
[20]
|
G. Pappas, P. Papadimitriou, N. Akritidis, L. Christou and E.V. Tsianos, The new global map of human brucellosis, Lancet Infect. Dis., 6(2006), 91-99.
Google Scholar
|
[21]
|
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180(2002), 29-48.
Google Scholar
|
[22]
|
R. Xu and Z.E. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA., 10(2009), 3175-3189.
Google Scholar
|
[23]
|
Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Anal. RWA., 11(2010), 995-1004.
Google Scholar
|
[24]
|
J. Zhang, Z. Jin, G.Q. Sun, T. Zhou and S.G. Ruan, Analysis of rabies in China:transmission dynamics and control, PLoS ONE, 6(2011)(7), e20891. doi:10.1371/journal. pone.0020891.
Google Scholar
|
[25]
|
X. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
Google Scholar
|
[26]
|
J. Zinsstag, S. Dürra, M. Penny, R. Mindekem, F. Roth, S. Menendez Gonzalez, S. Naissengar and J. Hattendorf, Transmission dynamics and economics of rabies control in dogs and humans in an African city, Proc. Natl. Acad. USA., 106(2009), 14996-15001.
Google Scholar
|
[27]
|
J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar and P. Vounatsou, A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69(2005), 77-95.
Google Scholar
|