[1]
|
N. E. Alaa and M. Pierre, Convergence to equilibrium for discretized gradientlike systems with analytic features, IMA J. Numer. Anal., 33(2013)(4), 1291-1321.
Google Scholar
|
[2]
|
I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations, Asymptot. Anal., 69(2010)(1-2), 31-44.
Google Scholar
|
[3]
|
J. Bolte, A. Daniilidis, O. Ley, and L. Mazet, Characterizations of Lojasiewicz inequalities:subgradient flows, talweg, convexity, Trans. Amer. Math. Soc., 362(2010)(6), 3319-3363.
Google Scholar
|
[4]
|
R. Chill, On the Lojasiewicz-Simon gradient inequality, J. Funct. Anal., 201(2003)(2), 572-601.
Google Scholar
|
[5]
|
R. Chill and A. Haraux and M. A. Jendoubi, Applications of the LojasiewiczSimon gradient inequality to gradient-like evolution equations, Anal. Appl.(Singap.), 7(2009)(4), 351-372.
Google Scholar
|
[6]
|
R. Chill and M. A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear Anal., 53(2003)(7-8), 1017-1039.
Google Scholar
|
[7]
|
H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems, Discrete Contin. Dyn. Syst., 15(2006)(2), 505-528.
Google Scholar
|
[8]
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
Google Scholar
|
[9]
|
M. Grasselli and M. Pierre, Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradientlike systems, Commun. Pure Appl. Anal., 11(2012)(6), 2393-2416.
Google Scholar
|
[10]
|
M. Grasselli and M. Pierre, Energy stable and convergent finite elements schemes for the modified phase field crystal equation, ESAIM Math. Model. Numer. Anal., to appear.
Google Scholar
|
[11]
|
M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 24(2014)(14), 2743-2783.
Google Scholar
|
[12]
|
J. K. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., 43(1992)(1), 63-124.
Google Scholar
|
[13]
|
A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95(2005), 297-321.
Google Scholar
|
[14]
|
A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9(1999)(2), 95-124.
Google Scholar
|
[15]
|
A. Haraux and M. A. Jendoubi, On the convergence of global and bounded solutions of some evolution equations, J. Evol. Equ., 7(2007)(3), 449-470.
Google Scholar
|
[16]
|
A. Haraux and M. A. Jendoubi, The Convergence Problem For Dissipative Autonomous Systems:Classical Methods And Recent Advances, SpringerBriefs in Mathematics, 2015.
Google Scholar
|
[17]
|
M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Differential Equations, 144(1998)(2), 302-312.
Google Scholar
|
[18]
|
M. A. Jendoubi and P. Poláčik, Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. Roy. Soc. Edinburgh Sect. A, 133(2003)(5), 1137-1153.
Google Scholar
|
[19]
|
B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9(2010)(3), 685-702.
Google Scholar
|
[20]
|
L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math.(2), 118(1983)(3), 525-571.
Google Scholar
|
[21]
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, second edition, 1997.
Google Scholar
|
[22]
|
S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3(2004)(4), 921-934.
Google Scholar
|
[23]
|
S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Contin. Dyn. Syst., 11(2004)(2-3), 351-392.
Google Scholar
|