[1]
|
J. Argyris, T. E. Karakasidis and I. Andreadis, On the Julia set of the perturbed Mandelbrot map, Chaos, Solitons & Fractals, 11(2000), 2067-2073.
Google Scholar
|
[2]
|
J. Argyris, I. Andreadis and T. E. Karakasidis, On perturbations of the Mandelbrot map, Chaos, Solitons & Fractals, 11(2000), 1131-1136.
Google Scholar
|
[3]
|
J. Argyris, T. E. Karakasidis and I. Andreadis, On the Julia sets of a noiseperturbed Mandelbrot map, Chaos, Solitons & Fractals, 13(2002), 245-252.
Google Scholar
|
[4]
|
I. Andreadis and T. E. Karakasidis, On a topological closeness of perturbed Mandelbrot sets, Applied Mathematics and Computation, 215(2010), 3674-3683.
Google Scholar
|
[5]
|
I. Andreadis and T. E. Karakasidis, On a topological closeness of perturbed Julia sets, Applied Mathematics and Computation, 217(2010), 2883-2890.
Google Scholar
|
[6]
|
I. Andreadis and T. E. Karakasidis, On probabilistic Mandelbrot maps, Chaos, Solitons & Fractals, 42(2010), 1577-1583.
Google Scholar
|
[7]
|
I. Andreadis and T. E. Karakasidis, On a closeness of the Julia sets of noiseperturbed complex quadratic maps, International Journal of Bifurcation and Chaos, 22(2012), pp.1250221.
Google Scholar
|
[8]
|
I. Andreadis and T. E. Karakasidis, On numerical approximations of the area of the generalized Mandelbrot sets, Applied Mathematics and Computation, 219(2013), 10974-10982.
Google Scholar
|
[9]
|
C. Beck, Physical meaning for Mandelbrot and Julia sets, Physica D:Nonlinear Phenomena, 125(1999), 171-182.
Google Scholar
|
[10]
|
P. Blanchard, R. L. Devaney, A. Garijo, S. M. Marotta and E. D. Russell, The rabbit and other Julia sets wrapped in Sierpinski carpets, Complex Dynamics:Families and Friends, pp.277C296, 2009.
Google Scholar
|
[11]
|
P. Blanchard, R. L. Devaney, A. Garijo and E. D. Russel, A generalized version of the McMullen domain, International Journal of Bifurcation and Chaos, 18(2008), 2309-2318.
Google Scholar
|
[12]
|
G. R. Chen and S. T. Liu, On generalized synchronization of spatial chaos, Chaos, Solitons Fractals, 15(2003), 311-318.
Google Scholar
|
[13]
|
B. Derrida, L. De Seze and C. Itzykson, Fractal structure of zeros in hierarchical models, Journal of Statistical Physics, 33(1983), 559-569.
Google Scholar
|
[14]
|
I. D. Entwistle, Julia set art and fractals in the complex plane, Computers & Graphics, 13(1989), 389-392.
Google Scholar
|
[15]
|
K. Falconer, Fractal Geometry:Mathematical Foundations and Applications, John Wiley Sons, 2013.
Google Scholar
|
[16]
|
J.E. Fornaess, The Julia set of Henon maps, J. Math. Ann., 334(2006), 457-464.
Google Scholar
|
[17]
|
C. Getz and J. M. Helmstedt, Graphics with Mathematica:fractals, Julia sets, patterns and natural forms, Elsevier, 2004.
Google Scholar
|
[18]
|
G. Julia, Memoire sur literation des fonctions rationnelles, J. Math. Pures Appl., 4(1918), 47-245.
Google Scholar
|
[19]
|
M. Levin, A Julia set model of field-directed morphogenesis:developmental biology and artificial life, Computer. applications in the biosciences, 10(1994), 85-105.
Google Scholar
|
[20]
|
G. M. Levin, Symmetries on the Julia set, Mathematical Notes, 48(1990), 1126-1131.
Google Scholar
|
[21]
|
P. Liu and S. T. Liu, Control and synchronization of Julia sets in coupled map lattice, Communications in Nonlinear Science and Numerical Simulation, 16(2011), 3344-3355.
Google Scholar
|
[22]
|
S. T. Liu and F. F. Zhang, Complex function projective synchronization of complex chaotic system and its applications in secure communication, Nonlinear Dynamics, 76(2014), 1087-1097.
Google Scholar
|
[23]
|
X. S. Luo, G. R. Chen, B. H. Wang and Q. F. Jin, Hybrid control of perioddoubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos, Solitons Fractals, 18(2003), 775-783.
Google Scholar
|
[24]
|
B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM review, 10(1968), 422-437.
Google Scholar
|
[25]
|
M. Morabito and R. L. Devaney, Limiting Julia sets for singularly perturbed rational maps, International Journal of Bifurcation and Chaos, 18(2008), 3175-3181.
Google Scholar
|
[26]
|
N. S. Mojica, J. Navarro and P. C. Marijuan, Cellular bauplans:Evolving unicellular forms by means of Julia sets and Pickover biomorphs, Biosystems, 98(2009), 19-30.
Google Scholar
|
[27]
|
W. Qiu, X. Wang and Y. Yin, Dynamics of McMullen maps,, Advances in Mathematics, 229(2012), 2525-2577.
Google Scholar
|
[28]
|
M. Rani and R. Agarwal, Effect of stochastic noise on superior Julia sets, Journal of Mathematical Imaging and Vision, 36(2010), 63-68.
Google Scholar
|
[29]
|
N. Saitoh, A. Shimizu and K. Yoshida, An analysis of a family of rational maps containing:integrable and non-integrable difference analogue of the logistic equation, J. Phys. A. Math. Gen., 29(1996), 1831-1840.
Google Scholar
|
[30]
|
Y. Y. Sun, Z. Lu and P. Li, Complex time-delay dynamical systems of quadratic polynomials mapping, Nonlinear Dynamics, 79(2015), 369-375.
Google Scholar
|
[31]
|
J. Sun, W. Qiao and S. T. Liu, New identification and control methods of sinefunction Julia sets, Journal of Applied Analysis and Computation, 5(2015), 220-231.
Google Scholar
|
[32]
|
Y. Y. Sun and X. Y. Wang, Noise-perturbed quaternionic Mandelbrot sets, International Journal of Computer Mathematics, 86(2009), 2008-2028.
Google Scholar
|
[33]
|
Y. Y. Sun, R. Xu, L. Chen, R. Kong and X. Hu, A Novel Fractal Coding Method Based on MJ Sets, PloS one, 9(2014), pp. e101697.
Google Scholar
|
[34]
|
X. Y. Wang, and P. Chang, Research on fractal structure of generalized MJ sets utilized Lyapunov exponents and periodic scanning techniques, Applied mathematics and computation, 175(2006), 1007-1025.
Google Scholar
|
[35]
|
X. Y. Wang, P. J. Chang and N. N. Gu, Additive perturbed generalized Mandelbrot-Julia sets, Applied Mathematics and Computation, 189(2007), 754-765.
Google Scholar
|
[36]
|
X. Y. Wang, Z. Wang, Y. H. Lang and Z. F. Zhang, Noise perturbed generalized Mandelbrot sets, Journal of Mathematical Analysis and Applications, 347(2008), 179-187.
Google Scholar
|
[37]
|
X. Y. Wang, R. H. Jia and Z. F. Zhang, The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative, Applied Mathematics and Computation, 210(2009), 107-118.
Google Scholar
|
[38]
|
X. Y. Wang, R. H. Jia and Y. Y. Sun, The generalized Julia set perturbed by composing additive and multiplicative noises, Discrete Dynamics in Nature and Society, 2009(2010), Article ID:781976.
Google Scholar
|
[39]
|
X. Y. Wang and F. Ge, Quasi-sine Fibonacci M set with perturbation, Nonlinear Dynamics, 69(2012), 1765-1779.
Google Scholar
|
[40]
|
D. Wang and S. T. Liu, Synchronization between the spatial Julia sets of complex Lorenz system and complex Henon map, Nonlinear Dynamics, 81(2015), 1197-1205.
Google Scholar
|
[41]
|
Y. P. Zhang, Control and synchronization of Julia sets of the complex perturbed rational maps, International Journal of Bifurcation and Chaos, 23(2013), pp.1350083.
Google Scholar
|
[42]
|
Y. P. Zhang and S. T. Liu, Gradient control and synchronization of Julia sets, Chinese Physics B, 17(2008), pp.543.
Google Scholar
|