[1]
|
X. X. Ai, K. H. Sun and S. B. He, Compound attractors between different chaotic systems, Acta. Phys. Sin., 63(2014)(4), 040503.
Google Scholar
|
[2]
|
X. X. Ai, K. H. Sun, K, S. B. He, Design of grid multiscroll chaotic attractors via transformations, Int. J. Bifurcat. Chaos, 25(2015)(10), 1530027.
Google Scholar
|
[3]
|
X. X. Ai, K. H. Sun, S. B. He and H. H. Wang, Design and application of multi-scroll chaotic attractors based on simplified Lorenz system, Acta. Phys. Sin., 63(2014)(12), 120511.
Google Scholar
|
[4]
|
W. T. Chen, J. Zhuang and W. X. Yu, Measuring complexity using FuzzyEn, ApEn and SampEn, Med. Eng. Phys, 31(2009)(1), 61-68.
Google Scholar
|
[5]
|
K. E. Chlouverakis and J. C. Sprott, Chaotic hyperjerk systems, Chaos. Soliton. Fract., 28(2006)(3), 739-746
Google Scholar
|
[6]
|
L. O. Chua, L. Kocarev and K. Eckert, Experimental chaos synchronization in Chua's circuit, Int. J. Bifurcat. Chaos, 2(1992)(3), 705-708.
Google Scholar
|
[7]
|
M. Costa, A. L. Goldberger and C. K. Peng, Multiscale entropy analysis of complex physiologic time series, Phys. Rev. Lett., 89(2002)(6), 705-708.
Google Scholar
|
[8]
|
C. L. Fan, N. D. Jin and X. T. Chen, Multi-scale permutation entropy:a complexity measure for discriminating two-phase flow dynamics, Chin. Phys. Lett., 30(2013)(9), 090501.
Google Scholar
|
[9]
|
Z. F. Gui, X. F. Wu and Y. Chen, Global synchronization of multi-scroll saturated chaotic systems via single-state linear feedback control, Int. J. Mod. Phys. B., 27(2013)(5), 1350007.
Google Scholar
|
[10]
|
S. B. He, K. H. Sun and H. H.Wang, Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System, Entropy, 17(2015)(12), 8299-8311.
Google Scholar
|
[11]
|
S. B. He, K. H. Sun and C. X. Zhu, Complexity analysis of multi-wing chaotic systems, Chin. Phys. B, 22(2013)(5), 050506.
Google Scholar
|
[12]
|
X. Z. Liu, M. S. Xue and T. Z. Hong, Multi-scroll chaotic and hyperchaotic attractors generated from Chen system, Int. J. Bifurcat. Chaos, 22(2012)(2), 1250033.
Google Scholar
|
[13]
|
C. X. Liu, J. Yi and X. C. Xi, Research on the multi-scroll chaos generation based on Jerk mode, Proced. Eng., 29(2012)(4), 957-961.
Google Scholar
|
[14]
|
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20(1963)(2), 130-141.
Google Scholar
|
[15]
|
Y. Ma, Y. Li and X. Jiang, Simulation and circuit implementation of 12-scroll chaotic system, Chaos. Soliton. Fract, 75(2015)(1), 127-133.
Google Scholar
|
[16]
|
T. Mustafa and G. Arif, Modelling and simulation of the multi-scroll chaotic attractors using bond graph technique, Simul. Model. Pract. Th., 19(2011)(3), 899-910.
Google Scholar
|
[17]
|
D. Sara and R. M. Hamid, Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system, Phys. Lett. A, 374(2010)(11), 1368-1373.
Google Scholar
|
[18]
|
J. C. Sprott, Some simple chaotic Jerk functions, Am. J. Phys., 65(1997)(6), 537-543.
Google Scholar
|
[19]
|
G. H. Sun, M. Wang and L. L. Huang, Generating multi-scroll chaotic attractors via switched fractional systems, Circ. Syst. Signal. Pr., 30(2011)(6), 1183-1195.
Google Scholar
|
[20]
|
J. A. K. Suykens and J. Vandewalle, Generation of n-double scrolls (n=1, 2, 3, 4,...), IEEE Trans. Circuits Syst. I, 40(1993)(11), 861-867.
Google Scholar
|
[21]
|
K. H. Sun, S. B. He and Y. He, Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm, Acta. Phys. Sin., 62(2013)(1), 010501.
Google Scholar
|
[22]
|
K. H. Sun, S. B. He and L. Y. Sheng, Complexity analysis of chaotic sequence based on the intensive statistical complexity algorithm, Acta. Phys. Sin., 60(2011)(2), 020505.
Google Scholar
|
[23]
|
Z. L. Tang and S. M. Yu, Multi-Scroll chaotic system based on even-symmetric step-wave sequence control, Appl. Mech. Mater., 340(2013)(1), 760-766.
Google Scholar
|
[24]
|
K. S. Tang, G. Q. Zhong and G. R. Chen, Generation of n-scroll attractors via sine function, IEEE Trans. Circuits Syst. I, 48(2001)(11), 1369-1372.
Google Scholar
|
[25]
|
J. P. Toomey and D. M. Kane, Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy, Opt. Express, 22(2014)(2), 1713-1725.
Google Scholar
|
[26]
|
A. Wolf, J. B. Swift and H. L. Swinney, Determining Lyapunov exponents from a time series, Phys. D., 16(1985)(3), 285-317.
Google Scholar
|
[27]
|
X. M. Wu and Y. G. He, A systematic design method for 3-D grid multiscroll chaotic attractors and its circuit implementation employing Chaos, Int. J. Bifurcat. Chaos, 25(2015)(3), 1550041
Google Scholar
|
[28]
|
M. E. Yalcin, Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions, Chaos. Soliton. Fract., 34(2007)(5), 1659-1666.
Google Scholar
|
[29]
|
S. M. Yu, J. H. Lü and G. R. Chen, Design and implementation of n-scroll chaotic attractors from a general Jerk circuit, IEEE Trans. Circuits Syst. I, 52(2005)(1), 1459-1476.
Google Scholar
|
[30]
|
S. M. Yu, J. H. Lü and G. R. Chen, Theoretical design and circuit implementation of multidirectional multi-torus chaotic attractors, IEEE Trans. Circuits Syst. I, 54(2007)(9), 2087-2098.
Google Scholar
|
[31]
|
S. M. Yu and K. S. Tang, Generation of n×m-scroll attractors under a Chuacircuit framework, Int. J. Bifurcat. Chaos, 17(2007)(11), 3951-3964
Google Scholar
|
[32]
|
T. Zuo, K. H. Sun and X. X. Ai, High-order grid multiscroll chaotic attractors generated by the second-generation current conveyor circuit, IEEE Trans. Circuits Syst. Ⅱ, 61(2014)(10), 818-822.
Google Scholar
|