[1]
|
N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type, AMS Translation, 5(1962), 396-413.
Google Scholar
|
[2]
|
M. Benaïm, Un théorème de Poincaré-Bendixson pour une classe d'équations différentielles stochastiques, C. R. Acad. Sci. Paris Ser. I, 318(1994), 837-839.
Google Scholar
|
[3]
|
G. Chen and T. Li, Stability of stochastic delayed SIR model, Stochastics and Dynamics, 9(2009), 231-252.
Google Scholar
|
[4]
|
G. Chen, T. Li and C. Liu, Lyapunov exponent and almost sure asymptotic stability of a stochastic SIRS model, Publ. Matemàtiques, vol extra (2014), 153-165.
Google Scholar
|
[5]
|
G. Dong, C. Liu and J. Yang, The complexity of generalized center problem, Qual. Theory Dyn. Syst., 14(2015), 11-23.
Google Scholar
|
[6]
|
H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Sci. Math., 32(1908), 230-252.
Google Scholar
|
[7]
|
A. Fronville, A. Sadovski and H. Zoladek, Solution of the 1:-2 resonant centre problem in the quadratic case, Fund. Math., 157(1998), 191-207.
Google Scholar
|
[8]
|
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM REVIEW, 43(2001), 525-546.
Google Scholar
|
[9]
|
G. L. Kulinich and O. V. Pereguda, Phase picture of the diffusion processes with degenerate diffusion matrices, Random Oper. and Stoch. Equa., 5(1997), 203-216.
Google Scholar
|
[10]
|
C. Li, Two problems of planar quadratic systems, Sci. Sinica Ser. A, 26(1983), 471-481.
Google Scholar
|
[11]
|
C. Liu, G. Chen and C. Li, Integrability and linearizability of the Lotka-Volterra systems, J. Diff. Equa., 198(2004), 301-320.
Google Scholar
|
[12]
|
Z. Liu and K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266(2014), 1115-1149.
Google Scholar
|
[13]
|
X. Mao, Almost sure exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal., 53(2015), 370-389.
Google Scholar
|
[14]
|
X. Mao, Exponential Stability of Stochastic Differential Equations, Dekker, New York, 1994.
Google Scholar
|
[15]
|
V. Naudot and E. Noonburg, Predator-prey systems with a general nonmonotonic functional response, Phys. D, 253(2013), 1-11.
Google Scholar
|
[16]
|
D. Revuz and M. Yor, Continuous martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, 293. Springer-Verlag, Berlin, Third edition. 1999.
Google Scholar
|
[17]
|
H. Zoladek, Quadratic systems with center and their perturbations, J. Diff. Equa., 109(1994), 223-273.
Google Scholar
|