2017 Volume 7 Issue 1
Article Contents

Guoting Chen, Changjian Liu. STOCHASTIC CENTER OF SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS ON THE PLANE[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 67-78. doi: 10.11948/2017005
Citation: Guoting Chen, Changjian Liu. STOCHASTIC CENTER OF SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS ON THE PLANE[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 67-78. doi: 10.11948/2017005

STOCHASTIC CENTER OF SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS ON THE PLANE

  • Fund Project:
  • We study a stochastic analogy of the famous center problem of Dulac for quadratic differential equations in the plane. We introduce the concept of center for systems of stochastic differential equations of Itô's type on the plane, called stochastic center. We derive a criterion for the existence of such a center. We apply it to obtain necessary and sufficient conditions for quadratic stochastic differential equations in dimension 2.
    MSC: 34C05;60H10
  • 加载中
  • [1] N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type, AMS Translation, 5(1962), 396-413.

    Google Scholar

    [2] M. Benaïm, Un théorème de Poincaré-Bendixson pour une classe d'équations différentielles stochastiques, C. R. Acad. Sci. Paris Ser. I, 318(1994), 837-839.

    Google Scholar

    [3] G. Chen and T. Li, Stability of stochastic delayed SIR model, Stochastics and Dynamics, 9(2009), 231-252.

    Google Scholar

    [4] G. Chen, T. Li and C. Liu, Lyapunov exponent and almost sure asymptotic stability of a stochastic SIRS model, Publ. Matemàtiques, vol extra (2014), 153-165.

    Google Scholar

    [5] G. Dong, C. Liu and J. Yang, The complexity of generalized center problem, Qual. Theory Dyn. Syst., 14(2015), 11-23.

    Google Scholar

    [6] H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Sci. Math., 32(1908), 230-252.

    Google Scholar

    [7] A. Fronville, A. Sadovski and H. Zoladek, Solution of the 1:-2 resonant centre problem in the quadratic case, Fund. Math., 157(1998), 191-207.

    Google Scholar

    [8] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM REVIEW, 43(2001), 525-546.

    Google Scholar

    [9] G. L. Kulinich and O. V. Pereguda, Phase picture of the diffusion processes with degenerate diffusion matrices, Random Oper. and Stoch. Equa., 5(1997), 203-216.

    Google Scholar

    [10] C. Li, Two problems of planar quadratic systems, Sci. Sinica Ser. A, 26(1983), 471-481.

    Google Scholar

    [11] C. Liu, G. Chen and C. Li, Integrability and linearizability of the Lotka-Volterra systems, J. Diff. Equa., 198(2004), 301-320.

    Google Scholar

    [12] Z. Liu and K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266(2014), 1115-1149.

    Google Scholar

    [13] X. Mao, Almost sure exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal., 53(2015), 370-389.

    Google Scholar

    [14] X. Mao, Exponential Stability of Stochastic Differential Equations, Dekker, New York, 1994.

    Google Scholar

    [15] V. Naudot and E. Noonburg, Predator-prey systems with a general nonmonotonic functional response, Phys. D, 253(2013), 1-11.

    Google Scholar

    [16] D. Revuz and M. Yor, Continuous martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, 293. Springer-Verlag, Berlin, Third edition. 1999.

    Google Scholar

    [17] H. Zoladek, Quadratic systems with center and their perturbations, J. Diff. Equa., 109(1994), 223-273.

    Google Scholar

Article Metrics

Article views(2813) PDF downloads(846) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint