2017 Volume 7 Issue 1
Article Contents

Lingling Zhang, Guoliang Cai, Xiulei Fang. STABILITY FOR A NOVEL TIME-DELAY FINANCIAL HYPERCHAOTIC SYSTEM BY ADAPTIVE PERIODICALLY INTERMITTENT LINEAR CONTROL[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 79-91. doi: 10.11948/2017006
Citation: Lingling Zhang, Guoliang Cai, Xiulei Fang. STABILITY FOR A NOVEL TIME-DELAY FINANCIAL HYPERCHAOTIC SYSTEM BY ADAPTIVE PERIODICALLY INTERMITTENT LINEAR CONTROL[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 79-91. doi: 10.11948/2017006

STABILITY FOR A NOVEL TIME-DELAY FINANCIAL HYPERCHAOTIC SYSTEM BY ADAPTIVE PERIODICALLY INTERMITTENT LINEAR CONTROL

  • In this paper, we get a time-delay new financial hyperchaotic system by modifying an old financial hyperchaotic system. we study the stability of a time-delay financial hyperchaotic system via adaptive periodically intermittent linear control method. Stability is obtained by using Lyapunov stability theorem, adaptive update laws and differential inequalities. Moreover, some numerical simulations are performed to show the advantage of the applications of this method.
    MSC: 34K20;34C28;34H10
  • 加载中
  • [1] G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dynamics, 69(2012)(3), 1457-1464.

    Google Scholar

    [2] G. L. Cai, L. Yao, P. Hu and X. L. Fang, Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters, Discrete and Continuous Dynamical Systems-Series B, 18(2013)(8), 2019-2028.

    Google Scholar

    [3] S. M. Cai, J. J. Hao, Q. B. He and Z. R. Liu, Exponential stabilization of complex delayed dynamical networks via pinning periodically intermittent control, Physical Review Letters, 375(2011)(19), 1965-1971.

    Google Scholar

    [4] X. L. Chai, Z. H. Gan and C. X. Shi, Impulsive synchronization and adaptiveImpulsive synchronization of a novel financial hyperchaotic system, Mathematical Problems in Engineering, 2013(2013), Article ID:751616.

    Google Scholar

    [5] W. J. Du, Y. D. Zhang, Y. X. Chang, J. N. Yu and X. L. An, Bifurcation analysis and sliding mode control of chaotic vibrations in an autonomous system, Journal of Applied Mathematics, (2014), Article ID:726491.

    Google Scholar

    [6] A. M. A. El-Sayed, A. Elsaid, H. M. Nour and A. Elsonbaty, Synchronization of different dimensional chaotic systems with time varying parameters, disturbances and input nonlinearities, Journal of Applied Analysis and Computation, 4(2014)(4), 323-338.

    Google Scholar

    [7] G. Gambino and V. Sciacca, Intermittent and passivity based control strategies for a hyperchaotic system, Applied Mathematics and Computation, 221(2013), 367-382.

    Google Scholar

    [8] T. W. Huang, C. D. Li and X. Z. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18(2008)(3), Article ID:033122.

    Google Scholar

    [9] T. W. Huang, C. D. Li, W. W. Yu and G. R. Chen, Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback, Nonlinearity, 22(2009)(3), 569-584.

    Google Scholar

    [10] J. J. Huang, C. D. Li, W. Zhang and P. C. Wei, Projective synchronization of a hyperchaotic via periodically intermittent control, Chinese Physics B, 21(2012)(9), Article ID:090508.

    Google Scholar

    [11] C. Hu, J. Yu, H. J. Jiang and Z. D. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23(2010)(10), 2369-2391.

    Google Scholar

    [12] L. Q. Jin and Y. Liu, Study on adaptive slide mode controller for improving handling stability of motorized electric vehicles, Mathematical Problems Engineering, 2014(2014), Article ID:240857.

    Google Scholar

    [13] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64(1990)(8), 821-824.

    Google Scholar

    [14] D. Sadaoui, A. Boukabou and S. Hadef, Predictive feedback control and synchronization of hyperchaotic systems, Applied Mathematics and Computation, 11(2014)(247), 235-243.

    Google Scholar

    [15] H. Y. Sun, N. Li and Q. L. Zhang, Synchronization of delayed complex dynamical networks via adaptive periodically intermittent control, Control & Decision, 28(2013)(5), 797-800.

    Google Scholar

    [16] Y. P. Wu and G. D. Wang, Synchronization between fractional-order and integer-order hyperchaotic system via sliding model controller, Journal of Applied Mathematics, 2013(2013), Article ID:151025.

    Google Scholar

    [17] H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dynamics, 67(2012)(3), 2171-2182.

    Google Scholar

    [18] J. Yu, C. Hu, H. J. Jiang and Z. D. Jiang, Synchronization of nonlinear systems with delay via periodically nonlinear intermittent control, Commu Nonlinear Sci Numer Simul, 17(2012)(7), 2978-2989.

    Google Scholar

    [19] J. Zhou, Q. J. Wu, L. Xiang, S. M. Cai and Z. R. Liu, Impulsive synchronization seeking in general complex delayed dynamical networks, Nonlinear Analysis:Hybrid Systems, 5(2011)(3), 513-524.

    Google Scholar

    [20] H. B. Zhu and B. T. Cui, Stabilization and synchronization of chaotic systems via intermittent control, Communication in Nonlinear Science and Numerical Simulation, 15(2010)(11), 3577-3586.

    Google Scholar

Article Metrics

Article views(2082) PDF downloads(1128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint