[1]
|
G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dynamics, 69(2012)(3), 1457-1464.
Google Scholar
|
[2]
|
G. L. Cai, L. Yao, P. Hu and X. L. Fang, Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters, Discrete and Continuous Dynamical Systems-Series B, 18(2013)(8), 2019-2028.
Google Scholar
|
[3]
|
S. M. Cai, J. J. Hao, Q. B. He and Z. R. Liu, Exponential stabilization of complex delayed dynamical networks via pinning periodically intermittent control, Physical Review Letters, 375(2011)(19), 1965-1971.
Google Scholar
|
[4]
|
X. L. Chai, Z. H. Gan and C. X. Shi, Impulsive synchronization and adaptiveImpulsive synchronization of a novel financial hyperchaotic system, Mathematical Problems in Engineering, 2013(2013), Article ID:751616.
Google Scholar
|
[5]
|
W. J. Du, Y. D. Zhang, Y. X. Chang, J. N. Yu and X. L. An, Bifurcation analysis and sliding mode control of chaotic vibrations in an autonomous system, Journal of Applied Mathematics, (2014), Article ID:726491.
Google Scholar
|
[6]
|
A. M. A. El-Sayed, A. Elsaid, H. M. Nour and A. Elsonbaty, Synchronization of different dimensional chaotic systems with time varying parameters, disturbances and input nonlinearities, Journal of Applied Analysis and Computation, 4(2014)(4), 323-338.
Google Scholar
|
[7]
|
G. Gambino and V. Sciacca, Intermittent and passivity based control strategies for a hyperchaotic system, Applied Mathematics and Computation, 221(2013), 367-382.
Google Scholar
|
[8]
|
T. W. Huang, C. D. Li and X. Z. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18(2008)(3), Article ID:033122.
Google Scholar
|
[9]
|
T. W. Huang, C. D. Li, W. W. Yu and G. R. Chen, Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback, Nonlinearity, 22(2009)(3), 569-584.
Google Scholar
|
[10]
|
J. J. Huang, C. D. Li, W. Zhang and P. C. Wei, Projective synchronization of a hyperchaotic via periodically intermittent control, Chinese Physics B, 21(2012)(9), Article ID:090508.
Google Scholar
|
[11]
|
C. Hu, J. Yu, H. J. Jiang and Z. D. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23(2010)(10), 2369-2391.
Google Scholar
|
[12]
|
L. Q. Jin and Y. Liu, Study on adaptive slide mode controller for improving handling stability of motorized electric vehicles, Mathematical Problems Engineering, 2014(2014), Article ID:240857.
Google Scholar
|
[13]
|
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64(1990)(8), 821-824.
Google Scholar
|
[14]
|
D. Sadaoui, A. Boukabou and S. Hadef, Predictive feedback control and synchronization of hyperchaotic systems, Applied Mathematics and Computation, 11(2014)(247), 235-243.
Google Scholar
|
[15]
|
H. Y. Sun, N. Li and Q. L. Zhang, Synchronization of delayed complex dynamical networks via adaptive periodically intermittent control, Control & Decision, 28(2013)(5), 797-800.
Google Scholar
|
[16]
|
Y. P. Wu and G. D. Wang, Synchronization between fractional-order and integer-order hyperchaotic system via sliding model controller, Journal of Applied Mathematics, 2013(2013), Article ID:151025.
Google Scholar
|
[17]
|
H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dynamics, 67(2012)(3), 2171-2182.
Google Scholar
|
[18]
|
J. Yu, C. Hu, H. J. Jiang and Z. D. Jiang, Synchronization of nonlinear systems with delay via periodically nonlinear intermittent control, Commu Nonlinear Sci Numer Simul, 17(2012)(7), 2978-2989.
Google Scholar
|
[19]
|
J. Zhou, Q. J. Wu, L. Xiang, S. M. Cai and Z. R. Liu, Impulsive synchronization seeking in general complex delayed dynamical networks, Nonlinear Analysis:Hybrid Systems, 5(2011)(3), 513-524.
Google Scholar
|
[20]
|
H. B. Zhu and B. T. Cui, Stabilization and synchronization of chaotic systems via intermittent control, Communication in Nonlinear Science and Numerical Simulation, 15(2010)(11), 3577-3586.
Google Scholar
|