Mingli Hong. ON THE GLOBAL WELL-POSEDNESS OF THE 3D VISCOUS PRIMITIVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 102-118. doi: 10.11948/2017008
Citation: |
Mingli Hong. ON THE GLOBAL WELL-POSEDNESS OF THE 3D VISCOUS PRIMITIVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 102-118. doi: 10.11948/2017008
|
ON THE GLOBAL WELL-POSEDNESS OF THE 3D VISCOUS PRIMITIVE EQUATIONS
-
Abstract
Here we consider the global well-posedness of the 3D viscous primitive equations of the large-scale ocean. Inspired by the methods in Cao etc[2] and Guo etc[5], we prove the global well-posedness and the long-time dynamics for the primitive equations.
-
-
References
[1]
|
D. Bresch, F.Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness for the two-dimensional primitive equations, Diff. Int. Equ., 16(2003), 77-94.
Google Scholar
|
[2]
|
C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Ann. of Math., 166(2007), 245-267.
Google Scholar
|
[3]
|
G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I, Springer-Verlag, 1994.
Google Scholar
|
[4]
|
F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions for the primitive equations, Diff. Int. Equ., 14(2001), 1381-1408.
Google Scholar
|
[5]
|
B. Guo and D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere. J Diff Equ, 251(2011)(3), 457-491
Google Scholar
|
[6]
|
J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites nonlinéaires, Dunod, Paris, 1969.
Google Scholar
|
[7]
|
J. L. Lions, R. Temam and S. Wang, On the equations of the large scale ocean, Nonlinearity, 5(1992), 1007-1053.
Google Scholar
|
[8]
|
J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5(1992), 237-288.
Google Scholar
|
[9]
|
J. Pedlosky, Geophysical Fluid Dynamics, 2nd Edition, Springer-Verlag, Berlin/New York, 1987.
Google Scholar
|
-
-
-