[1]
|
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60(2000), 916-938.
Google Scholar
|
[2]
|
M. L. Bedran, V. Soares and M.E. Araujo, Temperature evolution of the FRW universe filled with modified Chaplygin gas, Phys. Lett. B, 659(2008), 462-465.
Google Scholar
|
[3]
|
N. Bilic, G. B. Tupper and R. Viollier, Dark matter dark energy and the Chaplygin gas, arXiv:astro-ph/0207423.
Google Scholar
|
[4]
|
S. Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21(1904), 1-121.
Google Scholar
|
[5]
|
G. Q. Chen and H. Liu, Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34(2003), 925-938.
Google Scholar
|
[6]
|
G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189(2004), 141-165.
Google Scholar
|
[7]
|
C. Daganzo, Requiem for second order fluid approximations of traffic flow, Transp. Res. Part B, 29(1995), 277-286.
Google Scholar
|
[8]
|
V. G. Danilov and V.M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Quart. Appl. Math., 63(2005), 401-427.
Google Scholar
|
[9]
|
J. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., 62(2001), 729-745.
Google Scholar
|
[10]
|
V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The Chaplygin gas as a model for dark energy, arXiv:gr-qc/0403062.
Google Scholar
|
[11]
|
L. Guo, Y. Zhang and G. Yin, Interactions of delta shock waves for the Chaplygin gas equations with spilt delta functions, J. Math. Anal. Appl., 410(2014), 190-201.
Google Scholar
|
[12]
|
T. von Karman, Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8(1941), 337-365.
Google Scholar
|
[13]
|
D. J. Korchinski, Solutions of a Riemann problem for a system of conservation laws possessing no classical weak solution, Thesis, Adelphi University, 1977.
Google Scholar
|
[14]
|
J. Lebacque, S. Mammar and H. Salem, The Aw-Rascle and Zhang's model:Vacuum problems, existence and regularity of the solutions of the Riemann problem, Transp. Res. Part B, 41(2007), 710-721.
Google Scholar
|
[15]
|
J. Q. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14(2001), 519-523.
Google Scholar
|
[16]
|
M. Nedeljkov, Singular shock waves in interactions, Quart. Appl. Math., 66(2008), 281-302.
Google Scholar
|
[17]
|
M. Nedeljkov, Delta and singular delta locus for one dimensional systems of conservation laws, Math. Methods Appl. Sci., 27(2004), 931-955.
Google Scholar
|
[18]
|
M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl., 344(2008), 1143-1157.
Google Scholar
|
[19]
|
L. Pan and X. Han, The Aw-Rascle traffic model with Chaplygin pressure, J. Math. Anal. Appl., 401(2013), 379-387.
Google Scholar
|
[20]
|
C. Shen and M. Sun, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Aw-Rascle model, J. Differential Equations, 249(2010), 3024-3051.
Google Scholar
|
[21]
|
M. R. Setare, Holographic Chaplygin gas model, Phys. Lett. B, 648(2007), 329-332.
Google Scholar
|
[22]
|
V. M. Shelkovich, δ-and δ'-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes, Russian Math. Surveys, 63(2008), 473-546.
Google Scholar
|
[23]
|
C. Shen and M. Sun, Interactions of delta shock waves for the transport equations with split delta functions, J. Math. Anal. Appl., 351(2009), 747-755.
Google Scholar
|
[24]
|
C. Shen and M. Sun, Stability of the Riemann solutions for a nonstrictly hyperbolic system of conservation laws, Nonlinear Anal. TMA, 73(2010), 3284-3294.
Google Scholar
|
[25]
|
W. C. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137(1999)(654).
Google Scholar
|
[26]
|
D. Tan, T. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws, J. Differential Equations, 112(1994), 1-32.
Google Scholar
|
[27]
|
H. S. Tsien, Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6(1939), 399-407.
Google Scholar
|
[28]
|
H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. Part B, 36(2002), 275-290.
Google Scholar
|