2017 Volume 7 Issue 1
Article Contents

Zhiqiang Shao, Meixiang Huang. INTERACTIONS OF DELTA SHOCK WAVES FOR THE AW-RASCLE TRAFFIC MODEL WITH SPLIT DELTA FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 119-133. doi: 10.11948/2017009
Citation: Zhiqiang Shao, Meixiang Huang. INTERACTIONS OF DELTA SHOCK WAVES FOR THE AW-RASCLE TRAFFIC MODEL WITH SPLIT DELTA FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 119-133. doi: 10.11948/2017009

INTERACTIONS OF DELTA SHOCK WAVES FOR THE AW-RASCLE TRAFFIC MODEL WITH SPLIT DELTA FUNCTIONS

  • Fund Project:
  • This paper is concerned with the interactions of δ-shock waves for the Aw-Rascle traffic model with split delta functions. The solutions are obtained constructively when the initial data are three piecewise constant states. The global structure and large time-asymptotic behaviors of the solutions are analyzed case by case. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with initial data by studying the limits of the solutions when the perturbed parameter ε → 0.
    MSC: 35L65;35L67
  • 加载中
  • [1] A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60(2000), 916-938.

    Google Scholar

    [2] M. L. Bedran, V. Soares and M.E. Araujo, Temperature evolution of the FRW universe filled with modified Chaplygin gas, Phys. Lett. B, 659(2008), 462-465.

    Google Scholar

    [3] N. Bilic, G. B. Tupper and R. Viollier, Dark matter dark energy and the Chaplygin gas, arXiv:astro-ph/0207423.

    Google Scholar

    [4] S. Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21(1904), 1-121.

    Google Scholar

    [5] G. Q. Chen and H. Liu, Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34(2003), 925-938.

    Google Scholar

    [6] G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189(2004), 141-165.

    Google Scholar

    [7] C. Daganzo, Requiem for second order fluid approximations of traffic flow, Transp. Res. Part B, 29(1995), 277-286.

    Google Scholar

    [8] V. G. Danilov and V.M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Quart. Appl. Math., 63(2005), 401-427.

    Google Scholar

    [9] J. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., 62(2001), 729-745.

    Google Scholar

    [10] V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The Chaplygin gas as a model for dark energy, arXiv:gr-qc/0403062.

    Google Scholar

    [11] L. Guo, Y. Zhang and G. Yin, Interactions of delta shock waves for the Chaplygin gas equations with spilt delta functions, J. Math. Anal. Appl., 410(2014), 190-201.

    Google Scholar

    [12] T. von Karman, Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8(1941), 337-365.

    Google Scholar

    [13] D. J. Korchinski, Solutions of a Riemann problem for a system of conservation laws possessing no classical weak solution, Thesis, Adelphi University, 1977.

    Google Scholar

    [14] J. Lebacque, S. Mammar and H. Salem, The Aw-Rascle and Zhang's model:Vacuum problems, existence and regularity of the solutions of the Riemann problem, Transp. Res. Part B, 41(2007), 710-721.

    Google Scholar

    [15] J. Q. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14(2001), 519-523.

    Google Scholar

    [16] M. Nedeljkov, Singular shock waves in interactions, Quart. Appl. Math., 66(2008), 281-302.

    Google Scholar

    [17] M. Nedeljkov, Delta and singular delta locus for one dimensional systems of conservation laws, Math. Methods Appl. Sci., 27(2004), 931-955.

    Google Scholar

    [18] M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl., 344(2008), 1143-1157.

    Google Scholar

    [19] L. Pan and X. Han, The Aw-Rascle traffic model with Chaplygin pressure, J. Math. Anal. Appl., 401(2013), 379-387.

    Google Scholar

    [20] C. Shen and M. Sun, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Aw-Rascle model, J. Differential Equations, 249(2010), 3024-3051.

    Google Scholar

    [21] M. R. Setare, Holographic Chaplygin gas model, Phys. Lett. B, 648(2007), 329-332.

    Google Scholar

    [22] V. M. Shelkovich, δ-and δ'-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes, Russian Math. Surveys, 63(2008), 473-546.

    Google Scholar

    [23] C. Shen and M. Sun, Interactions of delta shock waves for the transport equations with split delta functions, J. Math. Anal. Appl., 351(2009), 747-755.

    Google Scholar

    [24] C. Shen and M. Sun, Stability of the Riemann solutions for a nonstrictly hyperbolic system of conservation laws, Nonlinear Anal. TMA, 73(2010), 3284-3294.

    Google Scholar

    [25] W. C. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137(1999)(654).

    Google Scholar

    [26] D. Tan, T. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws, J. Differential Equations, 112(1994), 1-32.

    Google Scholar

    [27] H. S. Tsien, Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6(1939), 399-407.

    Google Scholar

    [28] H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. Part B, 36(2002), 275-290.

    Google Scholar

Article Metrics

Article views(37436) PDF downloads(888) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint