[1]
|
S. N. Chow, J. K. Hale and J. Mallet-Parret, An example of bifurcation to homoclinic orbits, J. Diff. Equs., 37(1980), 551-573.
Google Scholar
|
[2]
|
Tevian Dray, The Geometry of Special Relativity, CRC Press, Jul 2, 2012.
Google Scholar
|
[3]
|
M. Fečkan, Bifurcation from degenerate homoclinics in periodically forced systems, Discr. Cont. Dyn. Systems, 5(1999), 359-374.
Google Scholar
|
[4]
|
J. R. Gruendler, Homoclinic solutions for autonomous systems in arbitrary dimension, SIAM J.Math. Anal., 23(1992), 702-721.
Google Scholar
|
[5]
|
J. R. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
Google Scholar
|
[6]
|
J. K. Hale, Introduction to dynamic bifurcation, in "Bifurcation Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1057(1984), 106-151.
Google Scholar
|
[7]
|
J. K. Hale and X.-B. Lin, Heteroclinic orbits for Retarded functional differential equations, J. Diff. Equs., 65(1986), 175-202.
Google Scholar
|
[8]
|
R. Horn, Topics in Matrix analysis, Cambridge University Press, 1994.
Google Scholar
|
[9]
|
R. Horn and C. Johnson, Matrix analysis, Cambridge University Press, 1985.
Google Scholar
|
[10]
|
L. Jaeger and H. Kantz, Homoclinic tangencies and non-normal Jacobianseffects of noise in nonhyperbolic chaotic systems, Physica D, 105(1997), 79-96.
Google Scholar
|
[11]
|
J. Knobloch, Bifurcation of degenerate homoclinics in reversible and conservative systems, J. Dyn. Diff. Eqns., 9(1997), 427-444.
Google Scholar
|
[12]
|
J. Li and X. B. Lin, Traveling wave solutions for the Painlevé-integrable coupled KDV equations, Electron, J. Diff. Equs., 2008(2008)(86), 1-11.
Google Scholar
|
[13]
|
X. B. Lin, Using Melnikov's method to solve Silnikov's problems, Proc. Roy. Soc., Edinburgh 116A, 1990, 295-325.
Google Scholar
|
[14]
|
X. B. Lin, B. Long and C. Zhu, Multiple transverse homoclinic solutions near a degenerate homoclinic orbit, J. Differential Equations, 259(2015), 1-24.
Google Scholar
|
[15]
|
J. Mallet-Paret, Generic periodic solutions of functional differential equations, J. Differential Equations, 25(1977), 163-183.
Google Scholar
|
[16]
|
V. K. Melnikov, On the stability of the center for time periodic perturbation, Trans. Moscow Math. Soc., 12(1963), 1-57.
Google Scholar
|
[17]
|
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equs., 55(1984), 225-256.
Google Scholar
|
[18]
|
K. J. Palmer, Transversal heteroclinic orbits and Cherry'y example of a nonintegrable hemiltonian system, J. Diff. Eqns., 65(1986), 321-360.
Google Scholar
|
[19]
|
D. G. Schaeffer and M. Shearer, The classification of 2 x 2 systems of nonstrictly hyperbolic conservation laws, with application to oil recovery, Comm. Pure Appl. Math., 40(1987), 141-178.
Google Scholar
|
[20]
|
M. Shearer, The Riemann problem for 2x2 systems of hyperbolic conservation laws with case I quadratic nonlinearities, J. Differential Equations, 80(1989), 343-363.
Google Scholar
|