[1]
|
V. Avrutin, P. S. Dutta, M. Schanz and S. Banerjee, Influence of a square-root singularity on the behaviour of piecewise smooth maps, Nonlinearity, 23(2010), 445-463.
Google Scholar
|
[2]
|
V. Avrutin and M. Schanz, On the scaling properties of the period-increment scenario in dynamical systems, Chaos, Solitons Fractals, 11(2000), 1949-1955.
Google Scholar
|
[3]
|
S. Banerjee, J. Ing, E. Pavlovskaia, M. Wiercigroch and R. K. Reddy, Invisible grazings and dangerous bifurcations in impacting systems:the problem of narrow-band chaos, Phys. Rev. E, 79(2009), 037201.
Google Scholar
|
[4]
|
J. J. B. Biemond, N. van de Wouw and H. Nijmeijer, Nonsmooth bifurcations of equilibria in planar continuous systems, Nonlinear Anal. Hybrid Syst., 4(2010), 451-474.
Google Scholar
|
[5]
|
G. Bischi, L. Gardini and F. Tramontana, Bifurcation curves in discontinuous maps, Discrete Contin. Dyn. Syst. Ser. B, 13(2010), 249-267.
Google Scholar
|
[6]
|
D. R. J. Chillingworth, Dynamics of an impact oscillator near a degenerate graze, Nonlinearity, 23(2010), 2723-2748.
Google Scholar
|
[7]
|
W. Chin, E. Ott, H. E. Nusse and C. Grebogi, Grazing bifurcations in impact oscillators, Phys. Rev. E, 50(1994), 4427-4444.
Google Scholar
|
[8]
|
A. Colombo, M. di Bernardo, S. J. Hogan and M. R. Jeffrey, Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems, Physica D, 24(2012), 1845-1860.
Google Scholar
|
[9]
|
H. Dankowicz and J. Jerrelind, Control of near-grazing dynamics in impact oscillators, Proc. R. Soc. London Ser. A, 461(2005), 3365-3380.
Google Scholar
|
[10]
|
H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillators, Physica D, 136(2000), 280-302.
Google Scholar
|
[11]
|
H. Dankowicz, P. Piiroinen and A. B. Nordmark, Low-velocity impacts of quasiperiodic oscillators, Chaos, Solitons Fractals, 14(2002), 241-255.
Google Scholar
|
[12]
|
H. Dankowicz and X. Zhao, Local analysis of co-dimension-one and codimension-two grazing bifurcations in impact microactuators, Physica D, 202(2005), 238-257.
Google Scholar
|
[13]
|
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewisesmooth Dynamical Systems:Theory and Applications, Springer-Verlag, London, 2008.
Google Scholar
|
[14]
|
M. di Bernardo, C. J. Budd and A. R. Champneys, Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynmaical systems, Physica D, 160(2001), 222-254.
Google Scholar
|
[15]
|
M. di Bernardo, M. I. Feigin, S. J. Hogan and M. Homer, Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos, Solitons Fractals, 10(1999), 1881-1908.
Google Scholar
|
[16]
|
M. Fečkan, Bifurcation and chaos in discontinuous and continuous systems, Higher Education Press, Beijing, 2011.
Google Scholar
|
[17]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
Google Scholar
|
[18]
|
C. Halse, M. Homer and M. di Bernardo, C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons Fractals, 18(2003), 953-976.
Google Scholar
|
[19]
|
R. A. Ibrahim, Vibro-Impact Dynamics:Modelling, Mapping and Applications, Springer-Verlag, Berlin-Heidelberg, 2009.
Google Scholar
|
[20]
|
J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing, Physica D, 239(2010), 312-321.
Google Scholar
|
[21]
|
S. Kundu, S. Banerjee, J. Ing, E. Pavlovskaia and M. Wiercigroch, Singularities in soft-impacting systems, Physica D, 2410(2012), 553-565.
Google Scholar
|
[22]
|
M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, BerlinHeidelberg, 2000.
Google Scholar
|
[23]
|
R. I. Leine, Bifurcations of equilibria in non-smooth continous systems, Physica D, 223(2006), 121-137.
Google Scholar
|
[24]
|
R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems, European J. Mechanics A/Solids, 25(2006), 595-616.
Google Scholar
|
[25]
|
R. I. Leine and H. Nijmeijer, Dynamics and bifurcations of nonsmooth mechanical systems, Lecture Notes in Applied and Computational Mechanics, vol. 18, Springer-Verlag, Berlin, 2004.
Google Scholar
|
[26]
|
A. C. J. Luo, Discontinuous Dynamical Systems, Higher Education Press, Beijing, 2012.
Google Scholar
|
[27]
|
O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems:a survey, Physica D, 241(2012), 1826-1844.
Google Scholar
|
[28]
|
Yu. L. Maistrenko, V. L. Maistrenko and S. I. Vikul, On period-adding sequences of attracting cycles in piecewise linear maps, Chaos Solitons Fractals, 9(1998), 67-75.
Google Scholar
|
[29]
|
A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, J. Sound Vibration, 145(1991), 279-297.
Google Scholar
|
[30]
|
A. B. Nordmark, Universal limit mapping in grazing bifurcations, Phys. Rev. E, 55(1997), 266-270.
Google Scholar
|
[31]
|
E. Ott, Chaos in dynamical systems, Second edition, Cambridge University Press, Cambridge, 2002.
Google Scholar
|
[32]
|
E. Pavlovskaia, J. Ing, M. Wiercigroch and S. Banerjee, Complex dynamics of bilinear oscillator close to grazing, Int. J. Bifur. Chaos, 20(2010), 3801-3817.
Google Scholar
|
[33]
|
D. J. W. Simpson and J. D. Meiss, Aspects of bifurcation theory for piecewisesmooth, continuous systems, Physica D, 241(2012), 1861-1868.
Google Scholar
|
[34]
|
P. Thota and H. Dankowicz, Continuous and discontinuous grazing bifurcations in impacting oscillators, Physica D, 214(2006), 187-197.
Google Scholar
|
[35]
|
P. Thota and H. Dankowicz, Analysis of grazing bifurcations of quasiperiodic system attractors, Physica D, 220(2006), 163-174.
Google Scholar
|
[36]
|
P. Thota, X. Zhao and H. Dankowicz, Co-dimension-two grazing bifurcations in single-degree-of-freedom impact oscillators, J. Computational Nonlinear Dynamics, 1(2006), 328-335.
Google Scholar
|
[37]
|
X. Zhao and H. Dankowicz, Unfolding degenerate grazing dynamics in impact actuators, Nonlinearity, 19(2006), 399-418.
Google Scholar
|