2017 Volume 7 Issue 1
Article Contents

Zhengdong Du. PERIODIC ORBITS IN TWO CLASSES OF PIECEWISE SMOOTH MAPS WITH POSITIVE NONLINEAR PARTS[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 189-206. doi: 10.11948/2017013
Citation: Zhengdong Du. PERIODIC ORBITS IN TWO CLASSES OF PIECEWISE SMOOTH MAPS WITH POSITIVE NONLINEAR PARTS[J]. Journal of Applied Analysis & Computation, 2017, 7(1): 189-206. doi: 10.11948/2017013

PERIODIC ORBITS IN TWO CLASSES OF PIECEWISE SMOOTH MAPS WITH POSITIVE NONLINEAR PARTS

  • Fund Project:
  • In this paper we consider two classes of one dimensional piecewise smooth continuous maps that have been derived as normal forms for grazing bifurcations of piecewise smooth dynamical systems. These maps are linear on one side of the phase space and nonlinear on the other side. The case of nonlinear parts with negative coefficients has been studied previously and it is proved that period-adding scenarios are generic in this case. In contrast to this result, in our analytical and numerical results, the period-adding scenarios are not observed when the nonlinear parts have positive coefficients. Furthermore, our results suggest that the typical bifurcation scenario is period doubling cascade leading to chaos in this case, which is similar to that of the smooth logistic map.
    MSC: 37E05;37G10
  • 加载中
  • [1] V. Avrutin, P. S. Dutta, M. Schanz and S. Banerjee, Influence of a square-root singularity on the behaviour of piecewise smooth maps, Nonlinearity, 23(2010), 445-463.

    Google Scholar

    [2] V. Avrutin and M. Schanz, On the scaling properties of the period-increment scenario in dynamical systems, Chaos, Solitons Fractals, 11(2000), 1949-1955.

    Google Scholar

    [3] S. Banerjee, J. Ing, E. Pavlovskaia, M. Wiercigroch and R. K. Reddy, Invisible grazings and dangerous bifurcations in impacting systems:the problem of narrow-band chaos, Phys. Rev. E, 79(2009), 037201.

    Google Scholar

    [4] J. J. B. Biemond, N. van de Wouw and H. Nijmeijer, Nonsmooth bifurcations of equilibria in planar continuous systems, Nonlinear Anal. Hybrid Syst., 4(2010), 451-474.

    Google Scholar

    [5] G. Bischi, L. Gardini and F. Tramontana, Bifurcation curves in discontinuous maps, Discrete Contin. Dyn. Syst. Ser. B, 13(2010), 249-267.

    Google Scholar

    [6] D. R. J. Chillingworth, Dynamics of an impact oscillator near a degenerate graze, Nonlinearity, 23(2010), 2723-2748.

    Google Scholar

    [7] W. Chin, E. Ott, H. E. Nusse and C. Grebogi, Grazing bifurcations in impact oscillators, Phys. Rev. E, 50(1994), 4427-4444.

    Google Scholar

    [8] A. Colombo, M. di Bernardo, S. J. Hogan and M. R. Jeffrey, Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems, Physica D, 24(2012), 1845-1860.

    Google Scholar

    [9] H. Dankowicz and J. Jerrelind, Control of near-grazing dynamics in impact oscillators, Proc. R. Soc. London Ser. A, 461(2005), 3365-3380.

    Google Scholar

    [10] H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillators, Physica D, 136(2000), 280-302.

    Google Scholar

    [11] H. Dankowicz, P. Piiroinen and A. B. Nordmark, Low-velocity impacts of quasiperiodic oscillators, Chaos, Solitons Fractals, 14(2002), 241-255.

    Google Scholar

    [12] H. Dankowicz and X. Zhao, Local analysis of co-dimension-one and codimension-two grazing bifurcations in impact microactuators, Physica D, 202(2005), 238-257.

    Google Scholar

    [13] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewisesmooth Dynamical Systems:Theory and Applications, Springer-Verlag, London, 2008.

    Google Scholar

    [14] M. di Bernardo, C. J. Budd and A. R. Champneys, Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynmaical systems, Physica D, 160(2001), 222-254.

    Google Scholar

    [15] M. di Bernardo, M. I. Feigin, S. J. Hogan and M. Homer, Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos, Solitons Fractals, 10(1999), 1881-1908.

    Google Scholar

    [16] M. Fečkan, Bifurcation and chaos in discontinuous and continuous systems, Higher Education Press, Beijing, 2011.

    Google Scholar

    [17] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar

    [18] C. Halse, M. Homer and M. di Bernardo, C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons Fractals, 18(2003), 953-976.

    Google Scholar

    [19] R. A. Ibrahim, Vibro-Impact Dynamics:Modelling, Mapping and Applications, Springer-Verlag, Berlin-Heidelberg, 2009.

    Google Scholar

    [20] J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing, Physica D, 239(2010), 312-321.

    Google Scholar

    [21] S. Kundu, S. Banerjee, J. Ing, E. Pavlovskaia and M. Wiercigroch, Singularities in soft-impacting systems, Physica D, 2410(2012), 553-565.

    Google Scholar

    [22] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, BerlinHeidelberg, 2000.

    Google Scholar

    [23] R. I. Leine, Bifurcations of equilibria in non-smooth continous systems, Physica D, 223(2006), 121-137.

    Google Scholar

    [24] R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems, European J. Mechanics A/Solids, 25(2006), 595-616.

    Google Scholar

    [25] R. I. Leine and H. Nijmeijer, Dynamics and bifurcations of nonsmooth mechanical systems, Lecture Notes in Applied and Computational Mechanics, vol. 18, Springer-Verlag, Berlin, 2004.

    Google Scholar

    [26] A. C. J. Luo, Discontinuous Dynamical Systems, Higher Education Press, Beijing, 2012.

    Google Scholar

    [27] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems:a survey, Physica D, 241(2012), 1826-1844.

    Google Scholar

    [28] Yu. L. Maistrenko, V. L. Maistrenko and S. I. Vikul, On period-adding sequences of attracting cycles in piecewise linear maps, Chaos Solitons Fractals, 9(1998), 67-75.

    Google Scholar

    [29] A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, J. Sound Vibration, 145(1991), 279-297.

    Google Scholar

    [30] A. B. Nordmark, Universal limit mapping in grazing bifurcations, Phys. Rev. E, 55(1997), 266-270.

    Google Scholar

    [31] E. Ott, Chaos in dynamical systems, Second edition, Cambridge University Press, Cambridge, 2002.

    Google Scholar

    [32] E. Pavlovskaia, J. Ing, M. Wiercigroch and S. Banerjee, Complex dynamics of bilinear oscillator close to grazing, Int. J. Bifur. Chaos, 20(2010), 3801-3817.

    Google Scholar

    [33] D. J. W. Simpson and J. D. Meiss, Aspects of bifurcation theory for piecewisesmooth, continuous systems, Physica D, 241(2012), 1861-1868.

    Google Scholar

    [34] P. Thota and H. Dankowicz, Continuous and discontinuous grazing bifurcations in impacting oscillators, Physica D, 214(2006), 187-197.

    Google Scholar

    [35] P. Thota and H. Dankowicz, Analysis of grazing bifurcations of quasiperiodic system attractors, Physica D, 220(2006), 163-174.

    Google Scholar

    [36] P. Thota, X. Zhao and H. Dankowicz, Co-dimension-two grazing bifurcations in single-degree-of-freedom impact oscillators, J. Computational Nonlinear Dynamics, 1(2006), 328-335.

    Google Scholar

    [37] X. Zhao and H. Dankowicz, Unfolding degenerate grazing dynamics in impact actuators, Nonlinearity, 19(2006), 399-418.

    Google Scholar

Article Metrics

Article views(2353) PDF downloads(912) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint