[1]
|
K. T. Alligood, T. D. Sauer and J. A. Yorke, Chao-An Introduction to Dynamical Systems, New York, Springer-Verlag, 1996.
Google Scholar
|
[2]
|
J. H. E. Cartwright, Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Phys. Lett. A., 1999, 264, 298-302.
Google Scholar
|
[3]
|
G. Chen and X. Dong, From Chaos to Order:Perspectives, Methodologies, and Applications, World Scientific, Singapore, 1998.
Google Scholar
|
[4]
|
X. W. Chen, X. L. Fu and Z. J. Jing, Dynamics in a discrete-time predator-prey system with Allee effect, Acta. Math. Appl. Sin., 2012, 29, 143-164.
Google Scholar
|
[5]
|
X. W. Chen, X.L. Fu and Z. J. Jing, Complex dynamics in a discrete-time predator-prey system without Allee effect, Acta. Math. Appl. Sin., 2018, 29, 355-76.
Google Scholar
|
[6]
|
Z. Cheng, Y. Lin and J. Cao, Dynamical behaviors of a partial-dependent predator-prey system, Chaos, Solit. Fract., 2006, 28, 67-75.
Google Scholar
|
[7]
|
S. R. Choudhury, On bifurcations and chaos in predator-prey models with delay, Chaos, Solit. Fract., 1992, 2, 393-409.
Google Scholar
|
[8]
|
M. Danca, S. Codreanu and B. Bakó, Detailed Analysis of a Nonlinear Preypredator Model, Journal of Biological Physics, 1997, 23, 11-20.
Google Scholar
|
[9]
|
S. Elaydi, An Introduction to Difference Equations, 3rd ed., Springer-Verlag, New York, 2005.
Google Scholar
|
[10]
|
S. Elaydi, Discrete Chaos:With Applications in Science and Engineering, 2nd ed, Chapman and Hall/CRC, BocaRaton, FL, 2008.
Google Scholar
|
[11]
|
M. Fan and S. Agarwal, Periodic solutions of nonautonomous discrete predatorprey system of Lotka-Volterra type, Appl Anal., 2002, 81, 801-812.
Google Scholar
|
[12]
|
J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, New York, Springer-Verlag, 1983.
Google Scholar
|
[13]
|
D. P. Hu and H. J. Cao, Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun Nonlinear Sci Numer Simulat, 2015, 22, 702-715.
Google Scholar
|
[14]
|
G. Jiang and Q. Lu, Impulsive state feedback of a predator-prey model, J. Comput. Appl. Math., 2007, 200, 193-207.
Google Scholar
|
[15]
|
G. Jiang, Q. Lu and L. Qian, Complex dynamics of a Hollingtype Ⅱ preypredator system with state feedback control, Chaos, Solit. Fract., 2007, 31, 448-461.
Google Scholar
|
[16]
|
J. L. Kaplan and J. A Yorke, Aregime observed in a fluid flow model of Lorenz, Comm. Math. Phys., 1979, 67, 93-108.
Google Scholar
|
[17]
|
B. Liu, Z. Teng and L. Chen, Analysis of a predator-prey model with Holling Ⅱ functional response concerning impulsive control strategy, J. Comput. Appl. Math., 2006, 193, 347-362.
Google Scholar
|
[18]
|
S. Lynch, Dynamical Systems with Applications Using Mathematica, Birkhäser, Boston, 2007.
Google Scholar
|
[19]
|
X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predatorprey system, Chaos, Solit. Fract., 2007, 32, 80-94.
Google Scholar
|
[20]
|
F. R. Marotto, Snap-back repeller imply chaos in Rn, J. Math. Anal. Appl., 1978, 63, 199-223.
Google Scholar
|
[21]
|
F. R. Marotto, On redefining a snap-back repeller, Chaos, Solit. Fract., 2005, 25, 25-28.
Google Scholar
|
[22]
|
J. D. Murray, Mathematical Biology, New York, Springer-Verlag, 1993.
Google Scholar
|
[23]
|
M. Martelli, Discrete Dynamical Systems and Chaos, Pitman monographs and surveys in pure and applied mathematics, New York, Longman, 1992.
Google Scholar
|
[24]
|
E. Ott, Chaos in Dynamical Systems, 2nd ed, Cambridge, Cambridge University Press, 2002.
Google Scholar
|
[25]
|
C. Sun, M. Han, Y. Lin and Y. Chen, Global qualitative analysis for a predatorprey system with delay, Chaos, Solit. Fract., 2007, 32, 1582-1596.
Google Scholar
|
[26]
|
V. Volterra, Lecons sur la Théorie Mathématique de la Lutte pour la Vie, Paris, Gauthier-Villars, Reissued 1931.
Google Scholar
|
[27]
|
S. Winggins, Introduction to Applied Nonlinear Dynamical System and Chaos, New York, Springer-Verlag, 1990.
Google Scholar
|