2017 Volume 7 Issue 2
Article Contents

Ming Zhao, Cuiping Li, Jinliang Wang. COMPLEX DYNAMIC BEHAVIORS OF A DISCRETE-TIME PREDATOR-PREY SYSTEM[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 478-500. doi: 10.11948/2017030
Citation: Ming Zhao, Cuiping Li, Jinliang Wang. COMPLEX DYNAMIC BEHAVIORS OF A DISCRETE-TIME PREDATOR-PREY SYSTEM[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 478-500. doi: 10.11948/2017030

COMPLEX DYNAMIC BEHAVIORS OF A DISCRETE-TIME PREDATOR-PREY SYSTEM

  • Fund Project:
  • The dynamics of a discrete-time predator-prey system is investigated in detail in this paper. It is shown that the system undergoes flip bifurcation and Hopf bifurcation by using center manifold theorem and bifurcation theory. Furthermore, Marotto's chaos is proved when some certain conditions are satisfied. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as the period-6, 7, 8, 10, 14, 18, 24, 36, 50 orbits, attracting invariant cycles, quasi-periodic orbits, nice chaotic behaviors which appear and disappear suddenly, coexisting chaotic attractors, etc. These results reveal far richer dynamics of the discrete-time predator-prey system. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.
    MSC: 39A28;39A33;65P20
  • 加载中
  • [1] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chao-An Introduction to Dynamical Systems, New York, Springer-Verlag, 1996.

    Google Scholar

    [2] J. H. E. Cartwright, Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Phys. Lett. A., 1999, 264, 298-302.

    Google Scholar

    [3] G. Chen and X. Dong, From Chaos to Order:Perspectives, Methodologies, and Applications, World Scientific, Singapore, 1998.

    Google Scholar

    [4] X. W. Chen, X. L. Fu and Z. J. Jing, Dynamics in a discrete-time predator-prey system with Allee effect, Acta. Math. Appl. Sin., 2012, 29, 143-164.

    Google Scholar

    [5] X. W. Chen, X.L. Fu and Z. J. Jing, Complex dynamics in a discrete-time predator-prey system without Allee effect, Acta. Math. Appl. Sin., 2018, 29, 355-76.

    Google Scholar

    [6] Z. Cheng, Y. Lin and J. Cao, Dynamical behaviors of a partial-dependent predator-prey system, Chaos, Solit. Fract., 2006, 28, 67-75.

    Google Scholar

    [7] S. R. Choudhury, On bifurcations and chaos in predator-prey models with delay, Chaos, Solit. Fract., 1992, 2, 393-409.

    Google Scholar

    [8] M. Danca, S. Codreanu and B. Bakó, Detailed Analysis of a Nonlinear Preypredator Model, Journal of Biological Physics, 1997, 23, 11-20.

    Google Scholar

    [9] S. Elaydi, An Introduction to Difference Equations, 3rd ed., Springer-Verlag, New York, 2005.

    Google Scholar

    [10] S. Elaydi, Discrete Chaos:With Applications in Science and Engineering, 2nd ed, Chapman and Hall/CRC, BocaRaton, FL, 2008.

    Google Scholar

    [11] M. Fan and S. Agarwal, Periodic solutions of nonautonomous discrete predatorprey system of Lotka-Volterra type, Appl Anal., 2002, 81, 801-812.

    Google Scholar

    [12] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, New York, Springer-Verlag, 1983.

    Google Scholar

    [13] D. P. Hu and H. J. Cao, Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun Nonlinear Sci Numer Simulat, 2015, 22, 702-715.

    Google Scholar

    [14] G. Jiang and Q. Lu, Impulsive state feedback of a predator-prey model, J. Comput. Appl. Math., 2007, 200, 193-207.

    Google Scholar

    [15] G. Jiang, Q. Lu and L. Qian, Complex dynamics of a Hollingtype Ⅱ preypredator system with state feedback control, Chaos, Solit. Fract., 2007, 31, 448-461.

    Google Scholar

    [16] J. L. Kaplan and J. A Yorke, Aregime observed in a fluid flow model of Lorenz, Comm. Math. Phys., 1979, 67, 93-108.

    Google Scholar

    [17] B. Liu, Z. Teng and L. Chen, Analysis of a predator-prey model with Holling Ⅱ functional response concerning impulsive control strategy, J. Comput. Appl. Math., 2006, 193, 347-362.

    Google Scholar

    [18] S. Lynch, Dynamical Systems with Applications Using Mathematica, Birkhäser, Boston, 2007.

    Google Scholar

    [19] X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predatorprey system, Chaos, Solit. Fract., 2007, 32, 80-94.

    Google Scholar

    [20] F. R. Marotto, Snap-back repeller imply chaos in Rn, J. Math. Anal. Appl., 1978, 63, 199-223.

    Google Scholar

    [21] F. R. Marotto, On redefining a snap-back repeller, Chaos, Solit. Fract., 2005, 25, 25-28.

    Google Scholar

    [22] J. D. Murray, Mathematical Biology, New York, Springer-Verlag, 1993.

    Google Scholar

    [23] M. Martelli, Discrete Dynamical Systems and Chaos, Pitman monographs and surveys in pure and applied mathematics, New York, Longman, 1992.

    Google Scholar

    [24] E. Ott, Chaos in Dynamical Systems, 2nd ed, Cambridge, Cambridge University Press, 2002.

    Google Scholar

    [25] C. Sun, M. Han, Y. Lin and Y. Chen, Global qualitative analysis for a predatorprey system with delay, Chaos, Solit. Fract., 2007, 32, 1582-1596.

    Google Scholar

    [26] V. Volterra, Lecons sur la Théorie Mathématique de la Lutte pour la Vie, Paris, Gauthier-Villars, Reissued 1931.

    Google Scholar

    [27] S. Winggins, Introduction to Applied Nonlinear Dynamical System and Chaos, New York, Springer-Verlag, 1990.

    Google Scholar

Article Metrics

Article views(2995) PDF downloads(1196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint