2017 Volume 7 Issue 2
Article Contents

Wenjun Liu, Hefeng Zhuang. SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 501-522. doi: 10.11948/2017031
Citation: Wenjun Liu, Hefeng Zhuang. SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 501-522. doi: 10.11948/2017031

SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS

  • Fund Project:
  • In this study, based on a new quantum integral identity, we establish some quantum estimates of Hermite-Hadamard type inequalities for convex functions. These results generalize and improve some known results given in literatures.
    MSC: 34A08;26D10;26D15
  • 加载中
  • [1] M. Alomari, M. Darus and S. S. Dragomir, New inequalities of HermiteHadamard type for functions whose second derivatives absolute values are quasiconvex, Tamkang J. Math., 2010, 41(4), 353-359.

    Google Scholar

    [2] S. P. Bai, F. Qi and S.-H. Wang, Some new integral inequalities of Hermite-Hadamard type for (α,m;P)-convex functions on co-ordinates, J. Appl. Anal. Comput., 2016, 6(1), 171-178.

    Google Scholar

    [3] B. Chen et al., Color image analysis by quaternion-type moments, J. Math. Imaging Vision, 2015, 51(1), 124-144.

    Google Scholar

    [4] S. S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

    Google Scholar

    [5] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for mconvex functions, Tamkang J. Math., 2002, 33(1), 55-65.

    Google Scholar

    [6] B. Gu et al., Incremental support vector learning for ordinal regression, IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7), 1403-1416.

    Google Scholar

    [7] X. Y. Guo, F. Qi and B.-Y. Xi, Some new inequalities of Hermite-Hadamard type for geometrically mean convex functions on the co-ordinates, J. Comput. Anal. Appl., 2016, 21(1), 144-155.

    Google Scholar

    [8] S. Hussain and S. Qaisar, More results on Hermite-Hadamard type inequality through (α,m)-preinvexity, J. Appl. Anal. Comput., 2016, 6(2), 293-305.

    Google Scholar

    [9] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasiconvex functions, An. Univ. Craiova Ser. Mat. Inform.,,2007, 34, 83-88.

    Google Scholar

    [10] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002.

    Google Scholar

    [11] W. J. Liu, New integral inequalities via (α,m)-convexity and quasi-convexity, Hacet. J. Math. Stat., 2013, 42(3), 289-297.

    Google Scholar

    [12] W. J. Liu, Some Simpson type inequalities for h-convex and (α,m)-convex functions, J. Comput. Anal. Appl., 2014, 16(5), 1005-1012.

    Google Scholar

    [13] W. J. Liu, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 2015, 16(1), 249-256.

    Google Scholar

    [14] Z. Liu, Generalization and improvement of some Hadamard type inequalities for Lipschitzian mappings, J. Pure Appl. Math. Adv. Appl., 2009, 1(2), 175-181.

    Google Scholar

    [15] W. J. Liu and J. K. Park, Some perturbed versions of the generalized Trapezoid inequality for functions of bounded variation, J. Comput. Anal. Appl., 2017, 22(1), 11-18.

    Google Scholar

    [16] W. J. Liu and W. S. Wen, Some generalizations of different type of integral inequalities for MT-convex functions, Filomat, 2016, 30(2), 333-342.

    Google Scholar

    [17] W. J. Liu, W. S. Wen and J. K. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals or fractional integrals, J. Nonlinear Sci. Appl., 2016, 9(3), 766-777.

    Google Scholar

    [18] W. J. Liu, W. S. Wen and J. K. Park, A refinement of the difference between two integral means in terms of the cumulative variation and applications, J. Math. Inequal., 2016, 10(1), 147-157.

    Google Scholar

    [19] M. A. Noor, K. I. Noor and M. U. Awan, Some quantum estimates for HermiteHadamard inequalities, Appl. Math. Comput., 2015, 251, 675-679.

    Google Scholar

    [20] M. E. Özdemir, On Iyengar-type inequalities via quasi-convexity and quasiconcavity, Miskolc Math. Notes, 2014, 15(1), 171-181.

    Google Scholar

    [21] M. E. Özdemir, M. Avcı and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 2010, 23(9), 1065-1070.

    Google Scholar

    [22] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), 2010, 79(2), 265-272.

    Google Scholar

    [23] Y. Shuang, F. Qi and Y. Wang, Some inequalities of Hermite-Hadamard type for functions whose second derivatives are (α,m)-convex, J. Nonlinear Sci. Appl., 2016, 8(1), 139-148.

    Google Scholar

    [24] W. Sudsutad, S. K. Ntouyas and J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 2015, 9(3), 781-793.

    Google Scholar

    [25] W. Sudsutad, S. K. Ntouyas and J. Tariboon, Integral inequalities via fractional quantum calculus, J. Inequal. Appl., 2016, 2016(81), 1-15.

    Google Scholar

    [26] J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014, 2014(121), 13 pp.

    Google Scholar

    [27] J. Tariboon and S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013, 2013(282), 19 pp.

    Google Scholar

    [28] M. Tunç, Some Hadamard-like inequalities via convex and s-convex functions and their applications for special means, Mediterr. J. Math., 2014, 11(4), 1047-1059.

    Google Scholar

    [29] M. Tunç, On some integral inequalities via h-convexity, Miskolc Math. Notes, 2013, 3, 1041-1057.

    Google Scholar

    [30] C. Wang, Some fixed point results for nonlinear mappings in convex metric spaces, J. Nonlinear Sci. Appl., 2015, 8(5), 670-677.

    Google Scholar

    [31] C. Wang and T. Zhang, Approximating common fixed points for a pair of generalized nonlinear mappings in convex metric space, J. Nonlinear Sci. Appl., 2016, 9(1), 1-7.

    Google Scholar

    [32] Y. P. Wang, S. L. Tao and Q. Chen, Retrieving the variable coefficient for a nonlinear convection-diffusion problem with spectral conjugate gradient method, Inverse Probl. Sci. Eng., 2015, 23(8), 1342-1365.

    Google Scholar

    [33] Y. Wu et al., Hermite-Hadamard type integral inequalities via (s,m) -Pconvexity on co-ordinates, J. Nonlinear Sci. Appl., 2016, 9(3), 876-884.

    Google Scholar

Article Metrics

Article views(3167) PDF downloads(798) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint