[1]
|
M. Alomari, M. Darus and S. S. Dragomir, New inequalities of HermiteHadamard type for functions whose second derivatives absolute values are quasiconvex, Tamkang J. Math., 2010, 41(4), 353-359.
Google Scholar
|
[2]
|
S. P. Bai, F. Qi and S.-H. Wang, Some new integral inequalities of Hermite-Hadamard type for (α,m;P)-convex functions on co-ordinates, J. Appl. Anal. Comput., 2016, 6(1), 171-178.
Google Scholar
|
[3]
|
B. Chen et al., Color image analysis by quaternion-type moments, J. Math. Imaging Vision, 2015, 51(1), 124-144.
Google Scholar
|
[4]
|
S. S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
Google Scholar
|
[5]
|
S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for mconvex functions, Tamkang J. Math., 2002, 33(1), 55-65.
Google Scholar
|
[6]
|
B. Gu et al., Incremental support vector learning for ordinal regression, IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7), 1403-1416.
Google Scholar
|
[7]
|
X. Y. Guo, F. Qi and B.-Y. Xi, Some new inequalities of Hermite-Hadamard type for geometrically mean convex functions on the co-ordinates, J. Comput. Anal. Appl., 2016, 21(1), 144-155.
Google Scholar
|
[8]
|
S. Hussain and S. Qaisar, More results on Hermite-Hadamard type inequality through (α,m)-preinvexity, J. Appl. Anal. Comput., 2016, 6(2), 293-305.
Google Scholar
|
[9]
|
D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasiconvex functions, An. Univ. Craiova Ser. Mat. Inform.,,2007, 34, 83-88.
Google Scholar
|
[10]
|
V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002.
Google Scholar
|
[11]
|
W. J. Liu, New integral inequalities via (α,m)-convexity and quasi-convexity, Hacet. J. Math. Stat., 2013, 42(3), 289-297.
Google Scholar
|
[12]
|
W. J. Liu, Some Simpson type inequalities for h-convex and (α,m)-convex functions, J. Comput. Anal. Appl., 2014, 16(5), 1005-1012.
Google Scholar
|
[13]
|
W. J. Liu, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 2015, 16(1), 249-256.
Google Scholar
|
[14]
|
Z. Liu, Generalization and improvement of some Hadamard type inequalities for Lipschitzian mappings, J. Pure Appl. Math. Adv. Appl., 2009, 1(2), 175-181.
Google Scholar
|
[15]
|
W. J. Liu and J. K. Park, Some perturbed versions of the generalized Trapezoid inequality for functions of bounded variation, J. Comput. Anal. Appl., 2017, 22(1), 11-18.
Google Scholar
|
[16]
|
W. J. Liu and W. S. Wen, Some generalizations of different type of integral inequalities for MT-convex functions, Filomat, 2016, 30(2), 333-342.
Google Scholar
|
[17]
|
W. J. Liu, W. S. Wen and J. K. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals or fractional integrals, J. Nonlinear Sci. Appl., 2016, 9(3), 766-777.
Google Scholar
|
[18]
|
W. J. Liu, W. S. Wen and J. K. Park, A refinement of the difference between two integral means in terms of the cumulative variation and applications, J. Math. Inequal., 2016, 10(1), 147-157.
Google Scholar
|
[19]
|
M. A. Noor, K. I. Noor and M. U. Awan, Some quantum estimates for HermiteHadamard inequalities, Appl. Math. Comput., 2015, 251, 675-679.
Google Scholar
|
[20]
|
M. E. Özdemir, On Iyengar-type inequalities via quasi-convexity and quasiconcavity, Miskolc Math. Notes, 2014, 15(1), 171-181.
Google Scholar
|
[21]
|
M. E. Özdemir, M. Avcı and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 2010, 23(9), 1065-1070.
Google Scholar
|
[22]
|
M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), 2010, 79(2), 265-272.
Google Scholar
|
[23]
|
Y. Shuang, F. Qi and Y. Wang, Some inequalities of Hermite-Hadamard type for functions whose second derivatives are (α,m)-convex, J. Nonlinear Sci. Appl., 2016, 8(1), 139-148.
Google Scholar
|
[24]
|
W. Sudsutad, S. K. Ntouyas and J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 2015, 9(3), 781-793.
Google Scholar
|
[25]
|
W. Sudsutad, S. K. Ntouyas and J. Tariboon, Integral inequalities via fractional quantum calculus, J. Inequal. Appl., 2016, 2016(81), 1-15.
Google Scholar
|
[26]
|
J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014, 2014(121), 13 pp.
Google Scholar
|
[27]
|
J. Tariboon and S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., 2013, 2013(282), 19 pp.
Google Scholar
|
[28]
|
M. Tunç, Some Hadamard-like inequalities via convex and s-convex functions and their applications for special means, Mediterr. J. Math., 2014, 11(4), 1047-1059.
Google Scholar
|
[29]
|
M. Tunç, On some integral inequalities via h-convexity, Miskolc Math. Notes, 2013, 3, 1041-1057.
Google Scholar
|
[30]
|
C. Wang, Some fixed point results for nonlinear mappings in convex metric spaces, J. Nonlinear Sci. Appl., 2015, 8(5), 670-677.
Google Scholar
|
[31]
|
C. Wang and T. Zhang, Approximating common fixed points for a pair of generalized nonlinear mappings in convex metric space, J. Nonlinear Sci. Appl., 2016, 9(1), 1-7.
Google Scholar
|
[32]
|
Y. P. Wang, S. L. Tao and Q. Chen, Retrieving the variable coefficient for a nonlinear convection-diffusion problem with spectral conjugate gradient method, Inverse Probl. Sci. Eng., 2015, 23(8), 1342-1365.
Google Scholar
|
[33]
|
Y. Wu et al., Hermite-Hadamard type integral inequalities via (s,m) -Pconvexity on co-ordinates, J. Nonlinear Sci. Appl., 2016, 9(3), 876-884.
Google Scholar
|