[1]
|
A. Argyriou, T. Evgeniou and M. Pontil, Multi-task feature learning, Adv. Neural Inform. Process. Syst., 2007, 19, 41-48.
Google Scholar
|
[2]
|
J. Abernethy, F. Bach, T. Evgeniou and J. P. Vert, Low-rank Matrix Factorization with Attributes, Arxiv preprint cs/0611124, 2006.
Google Scholar
|
[3]
|
Y. Amit, M. Fink, N. Srebro and S. Ullman, Uncovering shared structures in multiclass classification, in Proceedings of the 24th International Conference on Machine Learning, ACM, Providence, RI, 2007, 17-24.
Google Scholar
|
[4]
|
J-F. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrxi completion, SIAM J. Optim., 2010, 20(4), 1956-1982.
Google Scholar
|
[5]
|
E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis? Journal of the ACM, 2011, 58(3), 1-37.
Google Scholar
|
[6]
|
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 2009, 9(6), 717-772.
Google Scholar
|
[7]
|
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo and A. S. Willskyc, Ranksparsity incoherence for matrix decomposition, SIAM J. Optim., 2011, 21(2), 572-596.
Google Scholar
|
[8]
|
P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank matrix:Application to SFM, IEEE Trans. Pattern Anal. Machine Intelligence, 2004, 26(8), 1051-1063.
Google Scholar
|
[9]
|
G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Math. Program., 1994, 64, 81-101.
Google Scholar
|
[10]
|
L. Cheng, M. Gong, D. Schuurmans and T. Caelli, Real-time discriminative background subtraction, IEEE Trans. Image Process., 2011, 20(5), 1401-1414.
Google Scholar
|
[11]
|
S. Deerwester, S. T. Dumains, T. Landauer, G. Furnas and R. Harshman, Indexing by latent semantic analysis, J. Soc. Inf. Sci., 1990, 41(6), 391-407.
Google Scholar
|
[12]
|
C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1936, 1(3), 211-218.
Google Scholar
|
[13]
|
E. Esser, Applications of Lagrangian-based Alternating Direction Methods and Connections to Split Bregman, CAM report, 2009.
Google Scholar
|
[14]
|
R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.
Google Scholar
|
[15]
|
R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, volume 9 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
Google Scholar
|
[16]
|
I. Jolliffe, Principal Component Analysis, Springer-Verlag, 1986.
Google Scholar
|
[17]
|
S. Ma, D. Goldfarb and L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program., 2011, 128(1), 321-353.
Google Scholar
|
[18]
|
M. Mesbahi and G. P. Papavassilopoulos, On the rank minimization problem over a positive semidefinitelinear matrix inequality, IEEE Trans. Automat. Control, 1997, 42, 239-243.
Google Scholar
|
[19]
|
C. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala, Latent semantic indexing, a probabilistic analysis, J. Comput. Syst. Sci., 2000, 61(2), 217-235.
Google Scholar
|
[20]
|
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 2010, 52(3), 471-501.
Google Scholar
|
[21]
|
C. Tomasi and T. Kanade, Shape and motion from image streams under orthography:A factorization method, Int. J. Comput. Vision, 1992, 9, 137-154.
Google Scholar
|
[22]
|
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 1996, 38, 49-95.
Google Scholar
|
[23]
|
G. A. Watson, Characterization of the subdifferential of some matrix norms, Linear Algebra Appl., 1992, 170, 1039-1053.
Google Scholar
|
[24]
|
J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), 12/2009.
Google Scholar
|
[25]
|
X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, Pacific Journal of Optimization, 2013, 9(1), 167-180.
Google Scholar
|