[1]
|
P. Avilez-Valente and F.J. Seabra-Santos, A Petrov-Galerkin finite element scheme for the regularized long wave equation, Comput. Mech., 2004, 34, 256-270.
Google Scholar
|
[2]
|
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in non-linear dispersive systems, Philos. Trans. R. Soc. London A., 1972, 272, 47-78.
Google Scholar
|
[3]
|
A. Doğan, Numerical solution of RLW equation using linear finite elements within Galerkin's method, Applied Mathematical Modelling, 2002, 26(7), 771-783.
Google Scholar
|
[4]
|
İ. Dağ, B. Saka and D. Irk, Galerkin methods for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math., 2006, 190(1-2), 532-547.
Google Scholar
|
[5]
|
A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 2006, 174, 833-845.
Google Scholar
|
[6]
|
A. Esen and O. Tasbozan, An approach to time fractional gas dynamics equation:Quadratic B-spline Galerkin method, Applied Mathematics and Computation, 2015, 261(15), 330-336.
Google Scholar
|
[7]
|
L. R. T. Gardner, G. A. Gardner and İ. Dağ, A B-spline finite element method for the regularized long wave equation, Commun. Numer. Meth. En., 1955, 59-68.
Google Scholar
|
[8]
|
L. R. T. Gardner and İ. Dağ, The boundary-forced regularized long wave equation, Ⅱ. Nuova Cimento, 1995, 110, 1487-1496.
Google Scholar
|
[9]
|
S. B. G. Karakoç, Y. Uçar and N. Yağmurlu, Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 2015, 42(2), 141-159.
Google Scholar
|
[10]
|
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos Mag (Ser 5), 1895, 39, 422-443.
Google Scholar
|
[11]
|
T. Lyche and R. Winther, A stable recurrence relation for trigonometric Bsplines, J. Approx. Theory, 1979, 25, 266-279.
Google Scholar
|
[12]
|
A. Nikolis, Numerical solutions of ordinary differential equations with quadratic trigonometric Splines, Applied Mathematics E-notes, 2004, 4, 142-149.
Google Scholar
|
[13]
|
P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge, 1979, 85, 143-159.
Google Scholar
|
[14]
|
D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 1966, 25, 321-330.
Google Scholar
|
[15]
|
J. S. Russell, Report on waves, 14th meeting of the British Association for the Advancement of Science, 1844, 311-390.
Google Scholar
|
[16]
|
B. Saka, İ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math. 2004, 81, 727-739.
Google Scholar
|
[17]
|
B. Saka and İ. Dağ, A numerical solution of the RLW equation by Galerkin method using quartic B-splines, Commun. Numer. Meth. En. 2008, 24, 1339-1361.
Google Scholar
|
[18]
|
Y. Ucar, B. Karaagac and A. Esen, A new approach on numerical solutions of the Improved Boussinesq type equation using quadratic B-spline Galerkin finite element method, Applied Mathematics and Computation, 2015, 270(1), 148-155.
Google Scholar
|
[19]
|
K. N. S. Kasi Viswanadham and S. M. Reddy, Numerical solution of fifth order boundary value problems by Petrov Galerkin method with cubic B-splines as basis functions and quintic B-splines as weight functions, International Journal of Computer Science and Electronics Engineering (IJCSEE), 2015, 3(1), 87-91.
Google Scholar
|
[20]
|
G. Walz, Identities for trigonometric B-splines with an application to curve design, BIT, 1997, 37(1), 189-201.
Google Scholar
|
[21]
|
A. M. Wazwaz, Partial differential equations and solitary waves theory, Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg, 2009.
Google Scholar
|
[22]
|
S. I. Zaki, Solitary waves of the splitted RLW equation, Comput. Phys. Comm. 2001, 138, 80-91.
Google Scholar
|