[1]
|
R. Abraham and Y. Ueda, The Chaos Avant-Garde:Memories of the Early Days of Chaos Theory, World Scientific, Singapore, 2000.
Google Scholar
|
[2]
|
G. Alvarez, S. Li, F. Montoya, G. Pastor and M. Romera, Breaking projective chaos sychronization secure communication using filtering and generalized synchronization, Chaos Solitons Fractals, 2005, 24(3), 775-783.
Google Scholar
|
[3]
|
G. Chen and T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1999, 9(8), 1465-1466.
Google Scholar
|
[4]
|
Y. Chen and Q. Yang, Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dynam., 2014, 77(3), 569-581.
Google Scholar
|
[5]
|
G. Chen, Controlling chaos and bifurcations in engineering systems, CRC Press, London, 1999.
Google Scholar
|
[6]
|
Z. Chen, Y. Yang and Z. Yuan, A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system, Chaos Solitons Fractals, 2008, 38(4), 1187-1196.
Google Scholar
|
[7]
|
Y. Ding and W. Jiang, Double Hopf bifurcation and chaos in Liu system with delayed feedback, J. Appl. Anal. Comput., 2011, 1(3), 325-349.
Google Scholar
|
[8]
|
O. Edward, Chaos in Dynamical Systems, Second ed., Cambridge University Press, Cambridge, 2002.
Google Scholar
|
[9]
|
Z. Ge and S. Li, A novel study of parity and attractor in the time reversed Lorentz system, Phys. Lett. A, 2009, 373(44), 4053-4059.
Google Scholar
|
[10]
|
Z. Ge and S. Li, Yang and Yin parameters in the Lorenz system, Nonlinear Dynam., 2010, 62(4), 105-117.
Google Scholar
|
[11]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin, 1983.
Google Scholar
|
[12]
|
Z. Huang, J. Cao and T. Jiang, Dynamics of stochastic Lorenz family of chaotic systems with jump, J. Math. Chem., 2014, 52(2), 754-754.
Google Scholar
|
[13]
|
Z. Huang, J. Cao and T. Jiang, Dynamics of stochastic Lorenz-Stenflo system, Nonlinear Dynam., 2014, 78(3), 1739-1754.
Google Scholar
|
[14]
|
N. V. Kuznetsov, T. Alexeeva and G. A. Leonov, Invariance of Lyapunov characteristic exponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular linearizations, 2016, 85(1), 195-201.
Google Scholar
|
[15]
|
N. V. Kuznetsov and G. A. Leonov, On stability by the first approximation for discrete systems, 2005 International Conference on Physics and Control, PhysCon 2005, Proceedings, IEEE 2005, 2005, 596-599.
Google Scholar
|
[16]
|
N. V. Kuznetsov, G. A. Leonov and V. I. Vagaitsev, Analyticalnumerical method for attractor localization of generalized Chuas system, IFAC Proc.(Volumes (IFAC-PapersOnline)), 2010, 4(1), 29-33.
Google Scholar
|
[17]
|
N. V. Kuznetsov, G. A. Leonov and V. I. Vagaitsev, Localization of hidden Chua's attractors, Phys. Lett. A, 2011, 375(23), 2230-2233.
Google Scholar
|
[18]
|
N. V. Kuznetsov, G. A. Leonov and V. I. Vagaitsev, Hidden attractor in smooth Chua systems, Phys. D, 2012, 241(18), 1482-1486.
Google Scholar
|
[19]
|
A. Kuznetsov, S. Kuznetsov, E. Mosekilde and N. V. Stankevich, Co-existing hidden attractors in a radio-physical oscillator system, J. Phys. A:Math. Theor., 2015, 48(12), 125101(12 pages).
Google Scholar
|
[20]
|
Y A. Kuzenetsov, Elements of Applied Bifurcation Theory, Third ed., SpringerVerlag, New York, 2004.
Google Scholar
|
[21]
|
H. Kokubu and R. Roussarie, Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences:Part I, J. Dyn. Differ. Equ., 2004, 16(2), 513-557.
Google Scholar
|
[22]
|
E. N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci., 1963, 20(2), 130-141.
Google Scholar
|
[23]
|
E. N. Lorenz, The Essence of Chaos, University of Washington Press, Seattle, 1993.
Google Scholar
|
[24]
|
J. Lü and G. Chen, A new chaotic attractor coined, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2002, 12(3), 659-661.
Google Scholar
|
[25]
|
X. Li and H. Wang, Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2011, 21(9), 2695-2712.
Google Scholar
|
[26]
|
Y. Liu and Q. Yang, Dynamics of a new Lorenz-like chaotic system, Nonlinear Anal. Real World Appl., 2010, 11(4), 2563-2572.
Google Scholar
|
[27]
|
X. Li and Q. Ou, Dynamical properties and simulation of a new Lorenz-like chaotic system, Nonlinear Dynam., 2011, 65(3), 255-270.
Google Scholar
|
[28]
|
X. Li and Z. Zhou, Hopf bifurcation of Codimension one and dynamical simulation for a 3D autonomous chaotic system, Bull. Korean Math. Soc., 2014, 51(2), 457-478.
Google Scholar
|
[29]
|
T. Li, G. Chen and G. Chen, On homoclinic and heteroclinic orbits of Chen's system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, 16(10), 3035-3041.
Google Scholar
|
[30]
|
Y. Liu and W. Pang, Dynamics of the general Lorenz family, Nonlinear Dynam., 2012, 67(2), 1595-1611.
Google Scholar
|
[31]
|
X. Li and P. Wang, Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system, Nonlinear Dynam., 2013, 73(1-2), 621-632.
Google Scholar
|
[32]
|
G. A. Leonov, Attractors, limit cycles and homoclinic orbits of low-dimensional quadratic systems, Can. Appl. Math. Q., 2009, 17(1), 121-159.
Google Scholar
|
[33]
|
G. A. Leonov, The Tricomi problem for the Shimizu-Morioka dynamical system, Dokl. Math., 2012, 86(3), 850-853.
Google Scholar
|
[34]
|
G. A. Leonov, General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems, Phys. Lett. A, 2012, 376(45), 3045-3050.
Google Scholar
|
[35]
|
G. A. Leonov, Criteria for the existence of homoclinic orbits of systems Lu and Chen, Dokl. Math., 2013, 87(2), 220-223.
Google Scholar
|
[36]
|
G. A. Leonov, Shilnikov chaos in Lorenz-like systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, 23(3), 1350058(10 pages).
Google Scholar
|
[37]
|
G. A. Leonov, The Tricomi problem on the existence of homoclinic orbits in dissipative systems, J. Appl. Math. Mech., 2013, 77(3), 296-304.
Google Scholar
|
[38]
|
G. A. Leonov, Fishing principle for homoclinic and heteroclinic trajectories, Nonlinear Dynam., 2014, 78(4), 2751-2751.
Google Scholar
|
[39]
|
G. A. Leonov, Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system, Phys. Lett. A, 2015, 379(6), 524-528.
Google Scholar
|
[40]
|
G. A. Leonov and N. V. Kuznetsov, Time-varying linearization and the Perron effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2007, 17(4), 1079-1107.
Google Scholar
|
[41]
|
G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, E. P. Solovyeva and A. M. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dynam., 2014, 77(1-2), 277-288.
Google Scholar
|
[42]
|
G. A. Leonov and N. V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, 23(1), 1330002(69 pages).
Google Scholar
|
[43]
|
G. A. Leonov and N. V. Kuznetsov, Analytical-Numerical Methods for Hidden Attractors Localization:The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits, Numerical Methods for Differential Equations, Numerical Methods for Differential Equations, Optimization, and Technological Problems Computational Methods in Applied Sciences, 2013, 27, 41-64.
Google Scholar
|
[44]
|
S. Lao, Y. Shekofteh, S. Jafari and J. Sprott, Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor, Nonlinear Dynam., 2014, 24(1), 1450010(11 pages).
Google Scholar
|
[45]
|
C. Li and J. Sprott, Coexisting hidden attractors in a 4-D simplified Lorenz system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, 24(03), 1450034(12 pages).
Google Scholar
|
[46]
|
Q. Li, H. Zeng and X. Yang, On hidden twin attractors and bifurcation in the Chuas circuit, Nonlinear Dynam., 2014, 77(1-2), 255-266.
Google Scholar
|
[47]
|
W. Liu and K. Chen, Chaotic behavior in a new fractional-order love triangle system with competition, J. Appl. Anal. Comput., 2015, 5(1), 103-113.
Google Scholar
|
[48]
|
J. Lü, A new chaotic system and beyond:the generalized Lorenz-like system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, 14(5), 1507-1537.
Google Scholar
|
[49]
|
J. Llibre, M. Messias and P. R. Silva, On the global dynamics of the Rabinovich system, J. Phys. A:Math. Theor., 2008, 41(27), 275210(21 pages).
Google Scholar
|
[50]
|
Y. Liu, Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the conjugate Lorenz-type system, Nonlinear Anal. Real World Appl., 2012, 13(6), 2466-2475.
Google Scholar
|
[51]
|
M. Molale, J. Jafari and J. C. Sprott, Simple chaotic flows with one stable equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, 23(11), 1350188(7 pages).
Google Scholar
|
[52]
|
M. Messias, Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system, J. Phys. A:Math. Theor., 2009, 42(11), 115101(18 pages).
Google Scholar
|
[53]
|
J. M. Ottino, C. W. Leong, H. Rising and P. D. Swanson, Morphological structures produced by mixing in chaotic flows, Nature, 1988, 333(02), 419-425.
Google Scholar
|
[54]
|
L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley Publishing Company Inc., Reading, 1962.
Google Scholar
|
[55]
|
Z. Qiao and X. Li, Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system, Math. Comput. Model. Dyn. Syst., 2014, 20(3), 264-283.
Google Scholar
|
[56]
|
G. Qi, G. Chen, M. A. van Wyk, B. J. van Wyk and Y. Zhang, A fourwing attractor generated from a new 3-D quadratic autonomous system, Chaos Solitons Fractals, 2008, 38(3), 705-721.
Google Scholar
|
[57]
|
O. E. Rössler, An equation for continuous chaos, Phys. Lett. A, 1976, 57(5), 397-398.
Google Scholar
|
[58]
|
C. Sparrow, The Lorenz Equations:Bifurcation Chaos, and Strange Attractor, Springer-Verlag, New York, 1982.
Google Scholar
|
[59]
|
J. C. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows, World Sci. Publ. Co Pte Ltd, Singapore, 2010.
Google Scholar
|
[60]
|
G. Tigan and D. Constantinescu, Heteroclinic orbits in the T and the Lü system, Chaos Solitons Fractals, 2009, 42(1), 20-23.
Google Scholar
|
[61]
|
G. Tigan, On a Method of Finding Homoclinic and Heteroclinic Orbits in Multidimensional Dynamical Systems, Appl. Math. Inf. Sci., 2010, 4(3), 383-394.
Google Scholar
|
[62]
|
H. Wang and X. Li. More dynamical properties revealed from a 3D Lorenzlike system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, 24(10), DOI:10.1142/S0218127414501338.
Google Scholar
|
[63]
|
H. Wang and X. Li. On singular orbits and a given conjecture for a 3D Lorenzlike system, Nonlinear Dynam., 2015, 80(1-2), 969-981.
Google Scholar
|
[64]
|
Z. Wang, Z. Chi, J. Wu and H. Lu, Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting, Expert Systems with Applications, 2011, 38(7), 8419-8429.
Google Scholar
|
[65]
|
C. Wang and X. Li, Stability and Nermark-Sacker bifurcation of a semi-discrete population model, J. Appl. Anal. Comput., 2014, 4(4), 419-435.
Google Scholar
|
[66]
|
Z. Wei, I. Moroz and A. Liu, Degenerate Hopf bifurcations, hidden attractors and control in the extended Sprott E system with only one stable equilibrium, Turkish J. Math., 2014, 38(4), 672-687.
Google Scholar
|
[67]
|
Z. Wang, S. Cang, E. O. Ochola and Y. Sun, A Hyperchaotic system without equilibrium, Nonlinear Dynam., 2012, 69(1-2), 531-537. DOI 10.1007/s11071-011-0284-z.
Google Scholar
|
[68]
|
Z. Wei, R. Wang and A. Liu, A new finding of the existence of hidden hyperchaotic attractors with no equilibria, Math. Comput. Simulation, 2014, 100, 13-23.
Google Scholar
|
[69]
|
Z. Wei and Q. Yang, Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria, Nonlinear Anal. Real World Appl., 2011, 12(1), 106-118.
Google Scholar
|
[70]
|
Z. Wei and Q. Yang, Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dynam., 2012, 68(4), 543-554.
Google Scholar
|
[71]
|
Z. Wei, Z. Zhang and M. Yao, Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, 25(2), 1550028(11 pages).
Google Scholar
|
[72]
|
Z. Wang, G. Qi, Y. Sun, B. J. van Wyk and M. A. van Wyk, A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems, Nonlinear Dynam., 2010, 60(3), 443-457.
Google Scholar
|
[73]
|
L. Wang, 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system, Nonlinear Dynam., 2009, 56(4), 453-462.
Google Scholar
|
[74]
|
Q. Yang and Y. Chen, Complex Dynamics in the Unified Lorenz-Type System, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, 24(4), DOI:10.1142/S0218127414500552.
Google Scholar
|
[75]
|
Q. Yang, Z. Wei, G. Chen, An unusual 3D autonomous quadratic chaotic system with two stable node-foci, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2010, 20(4), 1061-1083.
Google Scholar
|
[76]
|
H. Zhao, Y. Lin and Y. Dai, Hidden attractors and dynamics of a general autonomous van der Pol-Duffing oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, 24(6), 1450080(11 pages).
Google Scholar
|
[77]
|
Z. Zhusubaliyev and E. Mosekilde, Multistability and hidden attractors in a multilevel DC/DC converter, Math. Comput. Simulation, 2015, 109, 32-45.
Google Scholar
|
[78]
|
T. Zhou and G. Chen, Classification of chaos in 3-D autonomous quadratic systems-I. basic framework and methods, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, 16(9), 2459-2479.
Google Scholar
|