2017 Volume 7 Issue 2
Article Contents

Qi Wang, Qinqin Zhang. DYNAMICS OF A HIGHER-ORDER RATIONAL DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 770-787. doi: 10.11948/2017048
Citation: Qi Wang, Qinqin Zhang. DYNAMICS OF A HIGHER-ORDER RATIONAL DIFFERENCE EQUATION[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 770-787. doi: 10.11948/2017048

DYNAMICS OF A HIGHER-ORDER RATIONAL DIFFERENCE EQUATION

  • Fund Project:
  • We consider a higher order rational difference equation. Firstly, we skillfully give a sufficient and necessary condition for the existence and uniqueness of the initial value problem. And then we investigate the local stability, asymptotic behavior, periodicity and oscillation of solutions for the difference equation. Finally, we give some numerical simulations to illustrate our results.
    MSC: 39A10;65Q10;65Q30
  • 加载中
  • [1] R. Abo-Zeid, On the oscillation of a third order rational difference equation, J. Egyptian Math. Soc., 2015, 23(1), 62-66.

    Google Scholar

    [2] L. Barreira and C. Valls, Stability in delay difference equations with nonuniform exponential behavior, J. Differential Equations, 2007, 238(2), 470-490.

    Google Scholar

    [3] X. C. Cai, J. S. Yu and Z. M. Guo, Periodic solutions of a class of nonlinear difference equations via critical point method, Comput. Math. Appl., 2006, 52(12), 1639-1647.

    Google Scholar

    [4] D. Cheban and C. Mammana, Invariant manifolds, global attractorsand almost periodic solutions of nonautonomous difference equations, Nonlinear Anal., 2004, 56(4), 465-484.

    Google Scholar

    [5] D. Cheban, C. Mammana and E. Michetti, Global attractors of quasi-linear non-autonomous difference equations, Nonlinear Anal. Real World Appl., 2008, 1(3), 1716-1731.

    Google Scholar

    [6] H. J. Chen and M. C. Li, Stability of symbolic embeddings for difference equations and their multidimensional perturbations, J. Differential Equations, 2015, 258(3), 906-918.

    Google Scholar

    [7] C. Cinar, On the positive solutions of the difference equation xn+1=(axn-1)/(1+bxnxn-1), Appl. Math. Comput., 2004, 156(2), 587-590.

    Google Scholar

    [8] E. M. Elabbasy and E. M. Elsayed, Dynamics of a rational difference equation, Chin. Ann. Math. Ser. B, 2009, 30(2), 187-198.

    Google Scholar

    [9] S. Elaydi and R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology, J. Differential Equations, 2003, 208(1), 258-273.

    Google Scholar

    [10] Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo and A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, J. Difference Equ. Appl., 2012, 18(7), 1163-1181.

    Google Scholar

    [11] A. Gelişken, C. Ç inar and A. S. Kurbanli, On the asymptotic behavior and periodic nature of a difference equation with maximum, Comput. Math. Appl., 2010, 59(2), 898-902.

    Google Scholar

    [12] Z. M. Guo and J. S. Yu, Multiplicity results for periodic solutions to secondorder difference equations, J. Dynam. Differential Equations, 2006, 18(4), 943-960.

    Google Scholar

    [13] B. D. Iričanin, The boundedness character of two stević-type fourth-order difference equations, Appl. Math. Comput., 2010, 217(5), 1857-1862.

    Google Scholar

    [14] M. R. S. Kulenović and M. Nurkanović, Global behavior of a two-dimensional competitive system of difference equations with stocking, Math. Comput. Modelling, 2012, 55(7-8), 1998-2011.

    Google Scholar

    [15] R. Y. Ma and H. L. Ma, Positive solutions for nonlinear discrete periodic boundary value problems, Comput. Math. Appl., 2010, 59(1), 136-141.

    Google Scholar

    [16] R. Y. Ma and Y. J. Xu, Existence of positive solution for nonlinear fourth-order difference equations, Comput. Math. Appl., 2010, 59(12), 3770-3777.

    Google Scholar

    [17] R. M. May, Biological populations obeying difference equations:stable points, stable cycles, and chaos, J. theor. Biol., 1975, 51(2), 511-524.

    Google Scholar

    [18] R. M. May, Simple mathematical models with very complicated dynamics, Nature, 1976, 261(5560), 459-467.

    Google Scholar

    [19] H. Sedaghat, Convergence, oscillations, and chaos in a discrete model of combat, Siam Rev., 2002, 44(1), 74-92.

    Google Scholar

    [20] J. Tabor, Oscillation of linear difference equations in banach spaces, J. Differential Equations, 2003, 192(1), 170-187.

    Google Scholar

    [21] C. Y. Wang, S. Wang and W. Wang, Global asymptotic stability of equilibrium point for a family of rational difference equations, Appl. Math. Lett., 2011, 24(5), 714-718.

    Google Scholar

    [22] Q. Wang, F. P. Zeng, X. H. Liu and W. L. You, Stability of a rational difference equation, Appl. Math. Lett., 2012, 25(12), 2232-2239.

    Google Scholar

    [23] Q. Wang, F. P. Zeng, G. R. Zhang and X. H. Liu, Dynamics of the difference equation xn+1=(α+B1xn-1+B3xn-3+… +B2k+1xn-2k-1)/(A+B0xn++B2xn-2+… +B2kxn-2k), J. Difference Equ. Appl., 2006, 12(5), 399-417.

    Google Scholar

    [24] H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 2011, 17(9), 1267-1280.

    Google Scholar

    [25] Q. Xiao and Q. H. Shi, Eventually periodic solutions of a max-type equation, Math. Comput. Modelling, 2013, 57(3-4), 992-996.

    Google Scholar

    [26] J. S. Yu, H. H. Bin and Z. M. Guo, Periodic solutions for discrete convex Hamiltonian systems via Clarke duality, Discrete Contin. Dyn. Syst., 2006, 15(3), 939-950.

    Google Scholar

    [27] J. S. Yu and Z. M. Guo, Some problems on the global attractivity of linear nonautonomous difference equations, Sci. China Ser. A, 2003, 46(6), 884-892.

    Google Scholar

    [28] J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 2006, 231(1), 18-31.

    Google Scholar

    [29] J. S. Yu, Z. M. Guo and X. F. Zou, Periodic solutions of second order selfadjoint difference equations, J. London Math. Soc., 2005, 71(1), 146-160.

    Google Scholar

    [30] J. S. Yu, Y. H. Long and Z. M. Guo, Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 2004, 16(2), 575-586.

    Google Scholar

    [31] Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Commun. Pure Appl. Anal., 2015, 14(5), 1929-1940.

    Google Scholar

    [32] Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic hamiltonian systems, Proc. Amer. Math. Soc., 2015, 143(7), 3155-3163.

    Google Scholar

    [33] Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 2010, 249(5), 1199-1212.

    Google Scholar

    [34] Z. Zhou, J. S. Yu and Y. M. Chen, Periodic solutions of a 2nth-order nonlinear difference equation, Sci. China Math., 2010, 53(1), 41-50.

    Google Scholar

Article Metrics

Article views(2424) PDF downloads(1249) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint