[1]
|
R. Abo-Zeid, On the oscillation of a third order rational difference equation, J. Egyptian Math. Soc., 2015, 23(1), 62-66.
Google Scholar
|
[2]
|
L. Barreira and C. Valls, Stability in delay difference equations with nonuniform exponential behavior, J. Differential Equations, 2007, 238(2), 470-490.
Google Scholar
|
[3]
|
X. C. Cai, J. S. Yu and Z. M. Guo, Periodic solutions of a class of nonlinear difference equations via critical point method, Comput. Math. Appl., 2006, 52(12), 1639-1647.
Google Scholar
|
[4]
|
D. Cheban and C. Mammana, Invariant manifolds, global attractorsand almost periodic solutions of nonautonomous difference equations, Nonlinear Anal., 2004, 56(4), 465-484.
Google Scholar
|
[5]
|
D. Cheban, C. Mammana and E. Michetti, Global attractors of quasi-linear non-autonomous difference equations, Nonlinear Anal. Real World Appl., 2008, 1(3), 1716-1731.
Google Scholar
|
[6]
|
H. J. Chen and M. C. Li, Stability of symbolic embeddings for difference equations and their multidimensional perturbations, J. Differential Equations, 2015, 258(3), 906-918.
Google Scholar
|
[7]
|
C. Cinar, On the positive solutions of the difference equation xn+1=(axn-1)/(1+bxnxn-1), Appl. Math. Comput., 2004, 156(2), 587-590.
Google Scholar
|
[8]
|
E. M. Elabbasy and E. M. Elsayed, Dynamics of a rational difference equation, Chin. Ann. Math. Ser. B, 2009, 30(2), 187-198.
Google Scholar
|
[9]
|
S. Elaydi and R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology, J. Differential Equations, 2003, 208(1), 258-273.
Google Scholar
|
[10]
|
Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo and A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, J. Difference Equ. Appl., 2012, 18(7), 1163-1181.
Google Scholar
|
[11]
|
A. Gelişken, C. Ç inar and A. S. Kurbanli, On the asymptotic behavior and periodic nature of a difference equation with maximum, Comput. Math. Appl., 2010, 59(2), 898-902.
Google Scholar
|
[12]
|
Z. M. Guo and J. S. Yu, Multiplicity results for periodic solutions to secondorder difference equations, J. Dynam. Differential Equations, 2006, 18(4), 943-960.
Google Scholar
|
[13]
|
B. D. Iričanin, The boundedness character of two stević-type fourth-order difference equations, Appl. Math. Comput., 2010, 217(5), 1857-1862.
Google Scholar
|
[14]
|
M. R. S. Kulenović and M. Nurkanović, Global behavior of a two-dimensional competitive system of difference equations with stocking, Math. Comput. Modelling, 2012, 55(7-8), 1998-2011.
Google Scholar
|
[15]
|
R. Y. Ma and H. L. Ma, Positive solutions for nonlinear discrete periodic boundary value problems, Comput. Math. Appl., 2010, 59(1), 136-141.
Google Scholar
|
[16]
|
R. Y. Ma and Y. J. Xu, Existence of positive solution for nonlinear fourth-order difference equations, Comput. Math. Appl., 2010, 59(12), 3770-3777.
Google Scholar
|
[17]
|
R. M. May, Biological populations obeying difference equations:stable points, stable cycles, and chaos, J. theor. Biol., 1975, 51(2), 511-524.
Google Scholar
|
[18]
|
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 1976, 261(5560), 459-467.
Google Scholar
|
[19]
|
H. Sedaghat, Convergence, oscillations, and chaos in a discrete model of combat, Siam Rev., 2002, 44(1), 74-92.
Google Scholar
|
[20]
|
J. Tabor, Oscillation of linear difference equations in banach spaces, J. Differential Equations, 2003, 192(1), 170-187.
Google Scholar
|
[21]
|
C. Y. Wang, S. Wang and W. Wang, Global asymptotic stability of equilibrium point for a family of rational difference equations, Appl. Math. Lett., 2011, 24(5), 714-718.
Google Scholar
|
[22]
|
Q. Wang, F. P. Zeng, X. H. Liu and W. L. You, Stability of a rational difference equation, Appl. Math. Lett., 2012, 25(12), 2232-2239.
Google Scholar
|
[23]
|
Q. Wang, F. P. Zeng, G. R. Zhang and X. H. Liu, Dynamics of the difference equation xn+1=(α+B1xn-1+B3xn-3+… +B2k+1xn-2k-1)/(A+B0xn++B2xn-2+… +B2kxn-2k), J. Difference Equ. Appl., 2006, 12(5), 399-417.
Google Scholar
|
[24]
|
H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 2011, 17(9), 1267-1280.
Google Scholar
|
[25]
|
Q. Xiao and Q. H. Shi, Eventually periodic solutions of a max-type equation, Math. Comput. Modelling, 2013, 57(3-4), 992-996.
Google Scholar
|
[26]
|
J. S. Yu, H. H. Bin and Z. M. Guo, Periodic solutions for discrete convex Hamiltonian systems via Clarke duality, Discrete Contin. Dyn. Syst., 2006, 15(3), 939-950.
Google Scholar
|
[27]
|
J. S. Yu and Z. M. Guo, Some problems on the global attractivity of linear nonautonomous difference equations, Sci. China Ser. A, 2003, 46(6), 884-892.
Google Scholar
|
[28]
|
J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 2006, 231(1), 18-31.
Google Scholar
|
[29]
|
J. S. Yu, Z. M. Guo and X. F. Zou, Periodic solutions of second order selfadjoint difference equations, J. London Math. Soc., 2005, 71(1), 146-160.
Google Scholar
|
[30]
|
J. S. Yu, Y. H. Long and Z. M. Guo, Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 2004, 16(2), 575-586.
Google Scholar
|
[31]
|
Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Commun. Pure Appl. Anal., 2015, 14(5), 1929-1940.
Google Scholar
|
[32]
|
Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic hamiltonian systems, Proc. Amer. Math. Soc., 2015, 143(7), 3155-3163.
Google Scholar
|
[33]
|
Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 2010, 249(5), 1199-1212.
Google Scholar
|
[34]
|
Z. Zhou, J. S. Yu and Y. M. Chen, Periodic solutions of a 2nth-order nonlinear difference equation, Sci. China Math., 2010, 53(1), 41-50.
Google Scholar
|