[1]
|
A. M Abourabia and A. M Morad, Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter, Physica A, 2015, 437, 333-350.
Google Scholar
|
[2]
|
M. Alquran and A. Qawasmeh, Soliton solutions of shallow water wave equations by means of G'/G expansion method, J. Appl. Anal. Comput., 2014, 4(3), 221-229.
Google Scholar
|
[3]
|
X. Geng, C. Cao and H. Dai, Quasi-periodic solutions for some (2+1)-dimensional integrable models generated by the Jaulent-Miodek hierarchy, Journal of Physics A-Mathematical and General, 2001, 34(5), 989-1004.
Google Scholar
|
[4]
|
X. Geng and Y. Ma, N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation, Phys. Lett. A, 2007, 369(4), 285-289.
Google Scholar
|
[5]
|
W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulation, 1997, 43(1), 13-27.
Google Scholar
|
[6]
|
R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, 2004.
Google Scholar
|
[7]
|
J. Li and F. Chen, Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations, Discrete Cont. Dyn. Sys., Series B, 2013, 18(1), 163-172.
Google Scholar
|
[8]
|
J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifur. Chaos, 2007, 17(11), 4049-4065.
Google Scholar
|
[9]
|
J. Li and T. He, Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation, Acta Math. Appl. Sin., English Seris, 2010, 26(2), 283-306.
Google Scholar
|
[10]
|
X. Li, J. Han and F. Wang, The extended Riccati equation method for traveling wave solutions of ZK equation, J. Appl. Anal. Comput., 2012, 2(4), 423-430.
Google Scholar
|
[11]
|
G. Lin, Traveling wave solutions for integro-difference systems, J. Differential Equations, 2015, 258, 2908-2940.
Google Scholar
|
[12]
|
A. Qawasmeh and M. Alquran, Soliton and Periodic Solutions for (2+1)-Dimensional Dispersive Long Water-Wave System, Appl. Math. Sci., 2014, 8(50), 2455-2463.
Google Scholar
|
[13]
|
T. Rehman, G. Gambino and S. Roy Choudhury, Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, 1746-1769.
Google Scholar
|
[14]
|
A. M Wazwaz, Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy, Phys. Lett. A, 2009, 373(21), 1844-1846.
Google Scholar
|
[15]
|
A. M Wazwaz, Multiple soliton solutions for some (3+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy, Appl. Math. Lett., 2012, 25, 1936-1940.
Google Scholar
|
[16]
|
J. Wu, N-soliton solution, generalized double Wronskian determinant solution and rational solution for a (2+1)-dimensional nonlinear evolution equation, Phys. Lett. A, 2008, 373(1), 83-88.
Google Scholar
|
[17]
|
K. Zhang and J. Han, Bifurcations of traveling wave solutions for the (2+1)-dimensional generalized asymmetric Nizhnik-Novikov-Veselov equation, Appl. Math. Comput., 2015, 251, 108-117.
Google Scholar
|
[18]
|
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative theory of differential equations, Science Press, Beijing, 1985.
Google Scholar
|
[19]
|
G. Zhao and S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differential Equations, 2014, 257, 1078-1147.
Google Scholar
|